scholarly journals Produced Water Treatment by Using Nanofibrous Polyvinylidene Fluoride Membrane in Air Gap Membrane Distillation

2017 ◽  
Author(s):  
Rasoul Moradi ◽  
Masoud Mehrizadeh ◽  
Hassan Niknafs
Desalination ◽  
2015 ◽  
Vol 366 ◽  
pp. 121-129 ◽  
Author(s):  
Hung C. Duong ◽  
Allan R. Chivas ◽  
Bart Nelemans ◽  
Mikel Duke ◽  
Stephen Gray ◽  
...  

2019 ◽  
Vol 25 (11) ◽  
pp. 47-54
Author(s):  
Ahmed Shamil Khalaf ◽  
Asrar Abdullah Hassan

Membrane distillation (MD) is a hopeful desalination technique for brine (salty) water. In this research, Direct Contact Membrane Distillation (DCMD) and  Air Gap Membrane Distillation (AGMD) will be used. The sample used is from Shat Al –Arab water (TDS=2430 mg/l). A polyvinylidene fluoride (PVDF) flat sheet membrane was used as a flat sheet form with a plate and frame cell. Several parameters were studied, such as; operation time, feed temperature, permeate temperature, feed flow rate. The results showed that with time, the flux decreases because of the accumulated fouling and scaling on the membrane surface. Feed temperature and feed flow rate had a positive effect on the permeate flux, while permeate temperature had a reverse effect on permeate flux. It is noticeable that the flux in DCMD is greater than AGMD, at the same conditions. The flux in DCMD is 10.95LMH, and that in AGMD is 7.14 LMH.  In AGMD, the air gap layer made a high resistance. Here the temperature transport reduces in the permeate side of AGMD due to the air gap resistance. The heat needed for AGMD is lower than DCMD, this leads to low permeate flux because the temperature difference between the two sides is very small, so the driving force (vapor pressure) is low.                                                                                               


Membranes ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 225
Author(s):  
Normi Izati Mat Nawi ◽  
Muhammad Roil Bilad ◽  
Ganeswaran Anath ◽  
Nik Abdul Hadi Nordin ◽  
Jundika Candra Kurnia ◽  
...  

Standalone membrane distillation (MD) and forward osmosis (FO) have been considered as promising technologies for produced water treatment. However, standalone MD is still vulnerable to membrane-wetting and scaling problems, while the standalone FO is energy-intensive, since it requires the recovery of the draw solution (DS). Thus, the idea of coupling FO and MD is proposed as a promising combination in which the MD facilitate DS recovery for FO—and FO acts as pretreatment to enhance fouling and wetting-resistance of the MD. This study was therefore conducted to investigate the effect of DS temperature on the dynamic of water flux of a hybrid FO–MD. First, the effect of the DS temperature on the standalone FO and MD was evaluated. Later, the flux dynamics of both units were evaluated when the FO and DS recovery (via MD) was run simultaneously. Results show that an increase in the temperature difference (from 20 to 60 °C) resulted in an increase of the FO and MD fluxes from 11.17 ± 3.85 to 30.17 ± 5.51 L m−2 h−1, and from 0.5 ± 0.75 to 16.08 L m−2 h−1, respectively. For the hybrid FO–MD, either MD or FO could act as the limiting process that dictates the equilibrium flux. Both the concentration and the temperature of DS affected the flux dynamic. When the FO flux was higher than MD flux, DS was diluted, and its temperature decreased; both then lowered the FO flux until reaching an equilibrium (equal FO and MD flux). When FO flux was lower than MD flux, the DS was concentrated which increased the FO flux until reaching the equilibrium. The overall results suggest the importance of temperature and concentration of solutes in the DS in affecting the water flux dynamic hybrid process.


Sign in / Sign up

Export Citation Format

Share Document