The Impact of the Net Stress on Gas Recovery from the Marcellus Shale

2018 ◽  
Author(s):  
Mohamed El Sgher ◽  
Kashy Aminian ◽  
Samuel Ameri
2021 ◽  
Author(s):  
Mohamed El Sgher ◽  
Kashy Aminian ◽  
Ameri Samuel

Abstract The objective of this study was to investigate the impact of the hydraulic fracturing treatment design, including cluster spacing and fracturing fluid volume on the hydraulic fracture properties and consequently, the productivity of a horizontal Marcellus Shale well with multi-stage fractures. The availability of a significant amount of advanced technical information from the Marcellus Shale Energy and Environment Laboratory (MSEEL) provided an opportunity to perform an integrated analysis to gain valuable insight into optimizing fracturing treatment and the gas recovery from Marcellus shale. The available technical information from a horizontal well at MSEEL includes well logs, image logs (both vertical and lateral), diagnostic fracture injection test (DFIT), fracturing treatment data, microseismic recording during the fracturing treatment, production logging data, and production data. The analysis of core data, image logs, and DFIT provided the necessary data for accurate prediction of the hydraulic fracture properties and confirmed the presence and distribution of natural fractures (fissures) in the formation. Furthermore, the results of the microseismic interpretation were utilized to adjust the stress conditions in the adjacent layers. The predicted hydraulic fracture properties were then imported into a reservoir simulation model, developed based on the Marcellus Shale properties, to predict the production performance of the well. Marcellus Shale properties, including porosity, permeability, adsorption characteristics, were obtained from the measurements on the core plugs and the well log data. The Quanta Geo borehole image log from the lateral section of the well was utilized to estimate the fissure distribution s in the shale. The measured and published data were utilized to develop the geomechnical factors to account for the hydraulic fracture conductivity and the formation (matrix and fissure) permeability impairments caused by the reservoir pressure depletion during the production. Stress shadowing and the geomechanical factors were found to play major roles in production performance. Their inclusion in the reservoir model provided a close agreement with the actual production performance of the well. The impact of stress shadowing is significant for Marcellus shale because of the low in-situ stress contrast between the pay zone and the adjacent zones. Stress shadowing appears to have a significant impact on hydraulic fracture properties and as result on the production during the early stages. The geomechanical factors, caused by the net stress changes have a more significant impact on the production during later stages. The cumulative gas production was found to increase as the cluster spacing was decreased (larger number of clusters). At the same time, the stress shadowing caused by the closer cluster spacing resulted in a lower fracture conductivity which in turn diminished the increase in gas production. However, the total fracture volume has more of an impact than the fracture conductivity on gas recovery. The analysis provided valuable insight for optimizing the cluster spacing and the gas recovery from Marcellus shale.


Author(s):  
Mohamed El Sgher ◽  
Kashy Aminian ◽  
Samuel Ameri

2021 ◽  
Author(s):  
Kathryn A Gazal ◽  
Kathleen G Arano

Abstract Advancement in drilling technology has increased natural gas extraction activities from the Marcellus shale deposit resulting in a shale gas boom in many regions, including West Virginia. This boom has created a significant labor demand shock to local economies experiencing the boom. A number of studies have shown that a shale gas boom directly increases employment and the income of those working in the industry. However, the boom can also have an adverse impact on other sectors through the resource movement effect and intersector labor mobility, pulling workers away from a related sector like forestry. Thus, an econometric model of employment in the forestry sector was developed to investigate the impact of the Marcellus shale gas boom in West Virginia. There is evidence of a labor movement effect with forestry employment negatively affected by the Marcellus shale boom. Specifically, the overall marginal effect of the shale boom on forestry employment is approximately 435 fewer jobs. However, the extent of the decline is slightly moderated by a higher relative wage between gas and forestry, perhaps suggesting diminishing returns and overall slack in the local labor market. Study Implications Although a Marcellus shale gas boom directly increases employment and the income of those working in that industry, it can have an adverse impact on other sectors by pulling workers away from a related sector like forestry. This study showed that employment in the West Virginia forestry sector was negatively affected by the shale gas boom. An important policy issue is how to manage the cyclical nature of shale gas booms and the negative impacts on other industries with long-term growth potential, like the forestry sector. This sector does not suffer through boom-and-bust cycles, making it important for long-term economic stability.


2020 ◽  
Vol 83 ◽  
pp. 103588
Author(s):  
Yiran Zhu ◽  
Huilin Xing ◽  
Victor Rudolph ◽  
Zhongwei Chen

2018 ◽  
Vol 55 (7) ◽  
pp. 988-998 ◽  
Author(s):  
Amit Sultaniya ◽  
Jeffrey A. Priest ◽  
C.R.I. Clayton

Methane gas recovery from gas hydrate–bearing sands requires dissociation of the hydrate. Understanding changes in the stiffness of the sand is essential if future production scenarios are to be modelled realistically. This paper reports the results of resonant column tests conducted to measure changes in shear and flexural Young’s modulus (stiffness) of sand specimens during the formation and dissociation of hydrate within the pore space. Factors such as hydrate saturation, effective stress, and dissociation method (thermal stimulation and depressurization) were evaluated. Results show a nonlinear relationship between stiffness and hydrate volume, with hydrate formation and dissociation giving markedly different changes in stiffness. Stiffness increases more slowly during the initial stages of hydrate formation, compared to later stages, with the eventual stiffness being independent of the effective stress applied at the start of formation. In contrast, the onset of dissociation leads to a rapid reduction in stiffness, with thermal stimulation giving a greater reduction compared to depressurization for similar changes in hydrate volume. These results highlight the impact of hydrate morphology on changes in stiffness during the hydrate formation process or its dissociation. We present and discuss a conceptual model to explain the differences observed.


Sign in / Sign up

Export Citation Format

Share Document