Oil Recovery Analyses and Formation Water Investigations for High Salinity-Low Salinity Water Flooding in Sandstone Reservoirs

Author(s):  
Hasan Al-Saedi ◽  
Ariel Williams ◽  
Ralph Flori ◽  
Patrick Brady ◽  
Soura Al-Jaberi
2018 ◽  
Vol 24 (8) ◽  
pp. 40
Author(s):  
Hussain Ali Baker ◽  
Kareem A. Alwan ◽  
Saher Faris Fadhil

Smart water flooding (low salinity water flooding) was mainly invested in a sandstone reservoir. The main reasons for using low salinity water flooding are; to improve oil recovery and to give a support for the reservoir pressure. In this study, two core plugs of sandstone were used with different permeability from south of Iraq to explain the effect of water injection with different ions concentration on the oil recovery. Water types that have been used are formation water, seawater, modified low salinity water, and deionized water. The effects of water salinity, the flow rate of water injected, and the permeability of core plugs have been studied in order to summarize the best conditions of low salinity water flooding. The result of this experimental work shows that the water without any free ions (deionized water) and modified low salinity water have improved better oil recovery than the formation water and seawater as a secondary oil process. The increase in oil recovery factor related to the wettability alteration during low salinity water flooding which causes a decrease in the interfacial tension between the crude oil in porous media and the surface of reservoir rocks. As well as the dissolution of minerals such as calcite Ca+2 was observed in this work, which causes an increase in the pH value. All these factors led to change the wettability of rock to be more water-wet, so the oil recovery can be increased.  


ACS Omega ◽  
2021 ◽  
Vol 6 (5) ◽  
pp. 3727-3735
Author(s):  
Yogarajah Elakneswaran ◽  
Amir Ubaidah ◽  
Miku Takeya ◽  
Mai Shimokawara ◽  
Hirofumi Okano

2021 ◽  
pp. 1-22 ◽  
Author(s):  
Ali Madadizadeh ◽  
Alireza Sadeghein ◽  
Siavash Riahi

Abstract Today, enhance oil recovery (EOR) methods are attracting more attention to increase the petroleum production rate. Some EOR methods such as low salinity water flooding (LSW) can increase the amount of fine migration and sand production in sandstone reservoirs which causes a reduction in permeability and inflict damages on to the reservoir and the production equipment. One of the methods to control fine migration is using nanotechnology. Nanoparticles (NPs) can reduce fine migration by various mechanisms such as reducing the zeta potential of fine particles' surfaces. In this paper, three NPs including SiO2, MgO, and Al2O3 's effects on controlling fine migration and sand production were investigated in two scenarios of pre-flush and co-injection by using sandpack as a porous media sample. When NPs are injected into the porous media sample, the outflow turbidity and zeta potential of particles decreases. Experiments showed that SiO2 has the best effect on controlling fine migration in comparison with other NPs and it could reduce fine migration 69% in pre-flush and 75% in co-injection. Also, MgO and Al2O3 decreased fine migration 65% and 33% in the pre-flush scenario and 49%,13% in the co-injection scenario, respectively.


Sign in / Sign up

Export Citation Format

Share Document