Enhanced Oil Recovery using Smart Water Injection

2018 ◽  
Vol 24 (8) ◽  
pp. 40
Author(s):  
Hussain Ali Baker ◽  
Kareem A. Alwan ◽  
Saher Faris Fadhil

Smart water flooding (low salinity water flooding) was mainly invested in a sandstone reservoir. The main reasons for using low salinity water flooding are; to improve oil recovery and to give a support for the reservoir pressure. In this study, two core plugs of sandstone were used with different permeability from south of Iraq to explain the effect of water injection with different ions concentration on the oil recovery. Water types that have been used are formation water, seawater, modified low salinity water, and deionized water. The effects of water salinity, the flow rate of water injected, and the permeability of core plugs have been studied in order to summarize the best conditions of low salinity water flooding. The result of this experimental work shows that the water without any free ions (deionized water) and modified low salinity water have improved better oil recovery than the formation water and seawater as a secondary oil process. The increase in oil recovery factor related to the wettability alteration during low salinity water flooding which causes a decrease in the interfacial tension between the crude oil in porous media and the surface of reservoir rocks. As well as the dissolution of minerals such as calcite Ca+2 was observed in this work, which causes an increase in the pH value. All these factors led to change the wettability of rock to be more water-wet, so the oil recovery can be increased.  

Author(s):  
Seyyed Hayan Zaheri ◽  
Hossein Khalili ◽  
Mohammad Sharifi

Water injection has been known as a conventional approach employed for years in order to achieve higher oil recovery from oil reservoirs. Since the last decade many researchers conducted on the water injection assessment suggested that low salinity water flooding can be an effective flooding mechanism and it can be used as an enhanced oil recovery method. Several examinations were conducted to identify governing mechanisms entailed in oil extraction and the effect of salinity and different types of ionic contents contained in Formation Water (FW) and injected fluid. This study is dedicated to address the influence of salinity and different types of ionic contents contained in formation water and injected fluid on incremental oil recovery. For this purpose, fluid–fluid and rock–fluid interaction were investigated especially for evaluating the effect of calcium ions in the formation water and sulfate ions in the injected water. Several experiments were carried out including core-flooding, contact angle, and imbibition tests. While former researchers concluded that reducing the salinity of injected water causing a decrease in ionic strength may lead to a greater oil recovery, in this research, we showed that these statements are not necessarily true. It was observed that existence of the high calcium concentration in the formation water would cause significant effect on wettability status of rocks and final oil recovery during low salinity water injection. This process is mainly due to rock wettability alteration. Wettability alteration mechanism in carbonate rocks is explained through interaction between rock and fluid composition. The results indicate the decisive role of calcium ions in the formation water at all stages from aging in oil to primary and secondary recovery. In addition to that, it was observed that more sulfate ion concentration in the injected water enhances rock wettability alteration.


RSC Advances ◽  
2020 ◽  
Vol 10 (69) ◽  
pp. 42570-42583
Author(s):  
Rohit Kumar Saw ◽  
Ajay Mandal

The combined effects of dilution and ion tuning of seawater for enhanced oil recovery from carbonate reservoirs. Dominating mechanisms are calcite dissolution and the interplay of potential determining ions that lead to wettability alteration of rock surface.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Alibi Kilybay ◽  
Bisweswar Ghosh ◽  
Nithin Chacko Thomas

In the oil and gas industry, Enhanced Oil Recovery (EOR) plays a major role to meet the global requirement for energy. Many types of EOR are being applied depending on the formations, fluid types, and the condition of the field. One of the latest and promising EOR techniques is application of ion-engineered water, also known as low salinity or smart water flooding. This EOR technique has been studied by researchers for different types of rocks. The mechanisms behind ion-engineered water flooding have not been confirmed yet, but there are many proposed mechanisms. Most of the authors believe that the main mechanism behind smart water flooding is the wettability alteration. However, other proposed mechanisms are interfacial tension (IFT) reduction between oil and injected brine, rock dissolution, and electrical double layer expansion. Theoretically, all the mechanisms have an effect on the oil recovery. There are some evidences of success of smart water injection on the field scale. Chemical reactions that happen with injection of smart water are different in sandstone and carbonate reservoirs. It is important to understand how these mechanisms work. In this review paper, the possible mechanisms behind smart water injection into the carbonate reservoir with brief history are discussed.


2021 ◽  
Author(s):  
Julfree Sianturi ◽  
Bayu Setyo Handoko ◽  
Aditya Suardiputra ◽  
Radya Senoputra

Abstract Handil Field is a giant mature oil and gas field situated in Mahakam Delta, East Kalimantan Indonesia. Peripheral Low Salinity Water injection was performed since 1978 with an extraordinary result. The paper is intending to describe the success story of this secondary recovery by low salinity water injection application in the peripheral of Handil field main zone, which successfully increased the oil recovery and brought down the remaining oil saturation beyond the theoretical value of residual oil saturation number. Water producer wells were drilled to produce low salinity water from shallow reservoirs 400 - 1000 m depth then it was injected to main zone reservoirs where the main accumulation of oil situated. This low salinity water reacted positively with the rock properties and in-situ fluids which was described as wettability alteration in the reservoir. It is related to initial reservoir condition, connate water saturation, rock physics and connate water salinity. This peripheral scheme then observed having the sweeping effect on top of pressure maintenance due to long period of injection. The field production performance was indicating the important reduction of residual oil saturation in some reservoirs with continuous low salinity water injection. From static Oil in Place calculation, some reservoirs have high current oil recovery up to 80%. This was proved by in situ residual oil saturation measurement which was performed in 2007 and 2011. It was indicating the low residual saturation as low as 8% - 15%. This excellent result was embraced by a progressive development plan, where water flooding with pattern and chemical injection will be performed later on. The continuation of this peripheral injection is in an on-going development with patterns injection which is called water flooding development. An important oil recovery can be achieved with a simple scheme of low salinity injection, performed in a close network injection, where the water treatment is simple yet significant oil gain was recovered. This innovation technique brings more revenue with less investment compared to chemical EOR injection.


2014 ◽  
Author(s):  
E. W. Al-Shalabi ◽  
K.. Sepehrnoori ◽  
G.. Pope ◽  
K.. Mohanty

Abstract The low salinity water injection (LSWI) technique is gaining popularity due to the simplicity of the method compared to other thermal and chemical EOR techniques. In this paper, a fundamental model is proposed which captures the effect of LSWI on improving the microscopic displacement efficiency from carbonates through the trapping number. The proposed model was used to history match recently published corefloods using the UTCHEM simulator. The proposed model incorporates wettability alteration effect through contact angle and trapping parameter. Results showed that history matching of the corefloods was performed successfully using the proposed model. Moreover, wettability alteration is the main contributor to LSWI effect on oil recovery from carbonate rocks. The proposed model was further validated upon which the applicability is extended to include weakly-oil-wet to mixed-wet rocks. This model can be used for oil recovery predictions from carbonate rocks at the field-scale.


2021 ◽  
Author(s):  
H. Zakyan

Enhanced Oil Recovery (EOR) come up with promising result to endure mature fields production performance and has been proven worldwide in many various methods. Recently, Low Salinity Water Injection evolves as a simply operation and relatively low cost EOR method with wide of research and implementation seem to be proved effective in the past decades. Some laboratory tests have indicated that injecting low salinity water can improve conventional waterflood performance by 5 – 20%. Hence, it introduces a promising idea that Low Salinity Water Injection should be implemented to mature fields in Indonesia for EOR activity. This paper will focus on determining the optimum salt concentration of injection water for low salinity water injection. Low salinity water injection in this study will be acted as a secondary recovery method. The production performance as a result of low salinity water injection was acquired by numerical simulation using tNavigatorTM Simulator. This simulation will be conducted in Tangai Structure at Sukananti Field, South Sumatera Basin, Indonesia with Talang Akar Formation reservoir target. The simulation is conduct with the constraint injection rate of 1,340 BWIPD. The low salinity water is designed by dilution of salt concentration from formation water with 18,000 ppm of concentration. In this case, the sensitivity of low salinity water, mainly amount of salt concentration design, will be conducted in the simulation consisting of using formation water as scenario’s base case and various low salinity water designs which will be limited until 10x of dilution (1,800 ppm). The result of this study concluded that Low Salinity Water Injection achieved more oil recovery than conventional waterflood did. This incremental is caused by wettability alteration due to of salt concentration changes which attract the clay minerals in reservoir through many complex mechanisms. The simulation result shows that injection water with 10x dilution (1,800 ppm) is chosen as an optimum salt concentration design, which gives the best result with gains additional oil recovery and recovery factor about of 118,8 MSTB and 4,9% respectively from a scenario by injecting formation water (18,000 ppm).


Author(s):  
Erfan Hosseini ◽  
Zhongwei Chen ◽  
Mohammad Sarmadivaleh ◽  
Dana Mohammadnazar

Abstract Seawater has been widely used as an injection fluid for maintaining pressure in sandstone and carbonate reservoirs. In the literature related to EOR research, it was noted that diluted seawater (low-salinity water) can highly improve recovery due to the specific ions (such as Ca2+, Mg2+, and SO42−). Such conclusions lead to the application of “Smart Water” in which changing the ion composition of injected water alters wettability and enhances recovery. Although many theories have been established to explain the mechanism of this phenomenon, almost all of them are limited to sandstone rocks, and the impact of smart water on carbonated reservoirs has rarely been explored. This study experimentally investigates the impact of the injection of high- and low-salinity and smart water on the change of wettability and recovery improvement in an Iranian South oil reservoir. Two different sets of experimental work were conducted. In the first set of experiments, the effect of formation water, diluted formation water (from 223,969 to 5000 ppm and 2000 ppm), seawater (initially 51,400 ppm), and diluted seawater on wettability alteration is investigated by monitoring the contact angle and relative permeability variation. The results showed that dilution of seawater to 2000 ppm has the most impact on wettability alteration. The relative permeability changed, and the contact angle decreased by a significant value of 100°, and recovery increased by about 71%. In the second set, the effect of ion change on the result was studied. For this purpose, the sulfate ion of diluted seawater (2000 ppm) is substituted by phosphate ion (H2PO4−). The results show the wettability alteration similar to the sulfate one. This study sheds light on the possible mechanism of wettability alteration in the carbonate reservoir, and the result will help to design a better low-salinity injection scenario.


2021 ◽  
Author(s):  
J. Sianturi

Handil Field is a giant mature oil and gas field situated in Mahakam Delta, East Kalimantan Indonesia. Peripheral Low Salinity Water injection was performed since 1978 with extraordinary results. This paper describes the success story of this secondary recovery by low salinity water injection application in the peripheral of Handil field main zone, which successfully increased the oil recovery and brought down the remaining oil saturation beyond the theoretical value of residual oil saturation. Water producer wells were drilled to produce low salinity water from shallow reservoirs 400 - 1000 m depth then it was injected to main zone reservoirs where the main accumulation of oil is situated. This low salinity water reacted positively with the rock properties and in-situ fluids which is described as wettability alteration in the reservoir. It is related to initial reservoir condition, connate water saturation, rock physics and connate water salinity. This peripheral scheme then observed having the sweeping effect on top of pressure maintenance due to long period of injection. The field production performance was indicating the important reduction of residual oil saturation in some reservoirs with continuous low salinity water injection. From static Oil in Place calculation, some reservoirs have high current oil recovery up to 80%. This was proved by in situ residual oil saturation measurement which was performed in 2007 and 2011. It was indicating the low residual saturation as low as 8% - 15%. This excellent result was embraced by a progressive development plan, where water flooding with pattern and chemical injection will be performed later on. The continuation of this peripheral injection is in an on-going development with patterns injection which is called water flooding development. An important oil recovery can be achieved with a simple scheme of low salinity injection, performed in a close network injection, where the water treatment is simple yet significant oil gain was recovered. This innovation technique brings more revenue with less investment compared to chemical EOR injection.


Sign in / Sign up

Export Citation Format

Share Document