A Thorough Investigation of PVT Data and Fluid Model for Giant Onshore Field, Hidden Lateral Trends Identified

2018 ◽  
Author(s):  
Said Meziani ◽  
Sofiane Tahir ◽  
Tayba Al Hashemi
Keyword(s):  
2018 ◽  
Vol 49 (8) ◽  
pp. 747-760 ◽  
Author(s):  
Muhammad Mubashir Bhatti ◽  
M. Ali Abbas ◽  
M. M. Rashidi

Author(s):  
Alexander Muranov ◽  
Alexey Semenov ◽  
Anatoly Kutsbakh ◽  
Boris Semenov

The article discusses one of the modern areas of powder metallurgy – the technology of manufacturing shaped parts by the powder injection molding (PIM). For the powder-polymer mixture (feedstock) with a wax-polypropylene binder of the solvent-thermal type of removal by isobaric volume dilatometry, the dependence of PVT state parameters was studied. For each component of the polymer binder, the dependence of pressure on the temperature of phase transition was obtained. As a result of mathematical processing and analysis of PVT data for the feedstock of the studied type, a technological window of parameters has been determined that allows injection molding of «green parts» with minimal volume shrinkage. The results of a comparative analysis of the compaction of feedstock with a polymer binder catalytic and solution-thermal type of removal are presented.


2003 ◽  
Vol 3 ◽  
pp. 208-219
Author(s):  
A.M. Ilyasov

In this paper we propose a model for determining the pressure loss due to friction in each phase in a three-layer laminar steady flow of immiscible liquid and gas flow in a flat channel. This model generalizes an analogous problem for a two-layer laminar flow, proposed earlier. The relations obtained in the final form for the pressure loss due to friction in liquids can be used as closing relations for the three-fluid model. These equations take into account the influence of interphase boundaries and are an alternative to the approach used in foreign literature. In this approach, the wall and interphase voltages are approximated by the formulas for a single-phase flow and do not take into account the mutual influence of liquids on the loss of pressure on friction in phases. The distribution of flow parameters in these two models is compared.


2014 ◽  
Vol 10 (5) ◽  
pp. 709-721 ◽  
Author(s):  
S. Nadeem ◽  
Hina Sadaf ◽  
M. Sadiq
Keyword(s):  

Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 989-1002
Author(s):  
Aamir Farooq ◽  
Muhammad Kamran ◽  
Yasir Bashir ◽  
Hijaz Ahmad ◽  
Azeem Shahzad ◽  
...  

Abstract The purpose of this proposed investigation is to study unsteady magneto hydrodynamic (MHD) mixed initial-boundary value problem for incompressible fractional Maxwell fluid model via oscillatory porous rectangular duct. Considering the modified Darcy’s law, the problem is simplified by using the method of the double finite Fourier sine and Laplace transforms. As a limiting case of the general solutions, the same results can be obtained for the classical Maxwell fluid. Also, the impact of magnetic parameter, porosity of medium, and the impact of various material parameters on the velocity profile and the corresponding tangential tensions are illuminated graphically. At the end, we will give the conclusion of the whole paper.


Sign in / Sign up

Export Citation Format

Share Document