Case Study Demonstrating the Estimation of Depth-Continuous Formation Anisotropy with Application to Geomechanics and Seismic Velocity Model Calibration

2019 ◽  
Author(s):  
Brian Hornby ◽  
Ruijia Wang ◽  
Mark Collins ◽  
JoonShik Kim ◽  
Rachel Confer
2012 ◽  
Author(s):  
Hashem shahsavani ◽  
Juergen Mann ◽  
Mehrdad Soleimani ◽  
Reza Sokooti ◽  
Mostafa Vahid Hashemi

2013 ◽  
Vol 53 (2) ◽  
pp. 485
Author(s):  
Goldy Oceaneawan ◽  
Noer Samsoe ◽  
Telaga Kautsar ◽  
Aditya Suharsono ◽  
Leksono Mucharam

Snapper Field is located in the Gippsland Basin, Australia. The field was discovered in 1968, and then continued by development drilling from the Snapper A platform, which started in 1981. The geopressure zones were encountered below 3,200 m at the Snapper—1 well and below 2,800 m at the Snapper A—21 well. If these zones are not anticipated before drilling, they could create problems, such as sticking, kick, or blowout. This extended abstract presents a technique to predict pore pressure from seismic velocity, where the seismic velocity was derived by CRS. Many case studies have shown that CRS stack could produce smooth macro-velocity model, which is more reliable to be used for pore pressure prediction. Eaton's equation was used to transform the seismic velocity derived by CRS to pore pressure as a function of depth. All of these workflows have been conducted using field data from the Snapper Field provided by the Victorian Department of Primary Industries. The prediction was compared with actual well pressure data to test the accuracy of prediction. The comparison shows that the pressure, which has been generated using this technique, is accurate. This result could be applied when making drilling programs particularly to identify the geo-pressure zones for wildcat/exploration wells in another field when pressure data from neighbouring wells are unavailable. If these geo-pressure zones could be anticipated, it will reduce drilling risk operation.


2018 ◽  
Vol 36 (4) ◽  
pp. 1
Author(s):  
Frank Cenci Bulhões ◽  
Gleidson Diniz Ferreira ◽  
José Fernando Caparica Jr.

ABSTRACT. In this work we discuss the impact of the uncertainties in the seismic interpretation on the velocity model building and time-depth conversion. The case study presented is located in the Campos Basin, Brazil. The main objective of this work is to show how the input data and the parameters affect substantially the velocity modeling. The methodology uses velocity model building methods and calibration parameters to integrate seismic interpretation and wells. It presents scenarios with calibration by time-depth tables and horizons-geological markers. The data converted to depth are compared to the time data and the geological markers. The data converted by the calibrated model with horizon-marker presented smaller differences compared to the markers and lower correlations in the pseudo-impedance. In the time-depth table calibration scenarios, the differences of the horizons compared to the markers were higher, but in the range of the seismic resolution and higher correlations.Keywords: seismic migration; wells; geological markers; exploration; interpretation.RESUMO. Neste trabalho é apresentado como as incertezas na interpretação sísmica impactam na cons-trução do modelo de velocidades e na conversão tempo-profundidade resultante. A área de estudo de estudo está localizada na Bacia de Campos, Brasil. O principal objetivo deste trabalho é mostrar como os dados de entrada e parâmetros afetam na modelagem de velocidade e conversão tempo x profundidade. A metodologia é comparar três diferentes cenários para calibração da velocidade de processamento e imageamento com as interpretações sísmicas e de poços: o cenário 1 utiliza ajuste por horizonte com marcador geológico e raio de influência 5 km; no cenário 2 é utilizada as tabelas tempo-profundidade, raio de influência 5 km por krigagem com derivada externa; e o cenário 3 utilizou-se tabelas tempo-profundidade, raio de influência 2 km por krigagem com deriva externa. O controle de qualidade dos três modelos de velocidade são avaliados pela conversão dos horizontes, seções sísmicas e perfis de pseudo-impedância. No cenário 1, os horizontes convertidos apresentam menores diferenças de profundidade em relação aos marcadores comparados aos demais cenários. Por outro lado, os cenários 2 e 3 apresentam maiores correlações entre o sismograma sintético e a seção sísmica convertida para o cenário 1.Palavras-chave: migração sísmica; poços; marcadores geológicos; exploração; interpretação.


2011 ◽  
Vol 64 (5) ◽  
pp. 1081-1088 ◽  
Author(s):  
Manfred Kleidorfer ◽  
Wolfgang Rauch

The Austrian standard for designing combined sewer overflow (CSO) detention basins introduces the efficiency of the combined sewer overflows as an indicator for CSO pollution. Additionally criteria for the ambient water quality are defined, which comprehend six kinds of impacts. In this paper, the Austrian legal requirements are described and discussed by means of hydrological modelling. This is exemplified with the case study Innsbruck (Austria) including a description for model building and model calibration. Furthermore an example is shown in order to demonstrate how – in this case – the overall system performance could be improved by implementing a cost-effective rearrangement of the storage tanks already available at the inflow of the wastewater treatment plant. However, this guideline also allows more innovative methods for reducing CSO emissions as measures for better usage of storage volume or de-centralised treatment of stormwater runoff because it is based on a sewer system simulation.


Sign in / Sign up

Export Citation Format

Share Document