Horizontal Wellbore Stability for Open hole Completions

Author(s):  
G-F. Fuh ◽  
P.K. Loose
2021 ◽  
Author(s):  
Fazeel Ahmad ◽  
Zohaib Channa ◽  
Fahad Al Hosni ◽  
Salman Farhan Nofal ◽  
Ziad Talat Libdi ◽  
...  

Abstract The paper discusses the pilot project in ADNOC Offshore to assess the Autonomous Inflow Control Device (AICD) technology as an effective solution for increasing oil production over the life of the field. High rate of water and gas production in horizontal wells is one of the key problems from the commencement of operation due to the high cost of produced water and gas treatment including several other factors. Early Gas breakthrough in wells can result in shut-in to conserve reservoir energy and to meet the set GOR guidelines. The pilot well was shut-in due to high GOR resulted from the gas breakthrough. A pilot project was implemented to evaluate the ability of autonomous inflow control technology to manage gas break through early in the life of the well spanned across horizontal wellbore. And also to balance the production influx profile across the entire lateral length and to compensate for the permeability variation and therefore the productivity of each zone. Each compartment in the pilot well was equipped with AICD Screens and Swell-able Packers across horizontal open hole wellbore to evaluate oil production and defer gas breakthrough. Some AICDs were equipped with treatment valve for the compartments that needed acid simulation to enhance the effectiveness of the zone. The selection factors for installing number of production valves in the pilot well per each AICD was based on reservoir and field data. Pre-modeling of the horizontal wellbore section with AICD was performed using commercial simulation software (NETool). After the first pilot was completed, a detailed technical analysis was conducted and based on the early production results from the pilot well showed that AICD completions effectively managed gas production by delaying the gas break through and restricting gas inflow from the reservoir with significant GOR reduction ±40% compared to baseline production performance data from the open hole without AICD thus increasing oil production. The pilot well performed positively to the AICD completion allowing to produce healthy oil and meeting the guidelines. The early production results are in line with NETool simulation modelling, thereby increasing assurance in the methods employed in designing the AICD completion for the well and candidate selection. This paper discusses the successful AICD completion installation and production operation in pilot well in ADNOC Offshore to manage GOR and produced the well with healthy oil under the set guidelines. This will enable to re-activate wells shut-in due to GOR constraint to help meeting the sustainable field production target.


2014 ◽  
Author(s):  
A.. Bottiglieri ◽  
A.. Brandl ◽  
R.S.. S. Martin ◽  
R.. Nieto Prieto

Abstract Cementing in wellbores with low fracture gradients can be challenging due to the risk of formation breakdowns when exceeding maximum allowable equivalent circulation densities (ECDs). Consequences include severe losses and formation damage, and insufficient placement of the cement slurry that necessitates time-consuming and costly remedial cementing to ensure zonal isolation. In recent cementing operations in Spain, the formation integrity test (FIT) of the open hole section indicated that the formation would have been broken down and losses occurred based on calculated equivalent circulating densities (ECDs) if the cement slurry had been pumped in a single-stage to achieve the operator's top-of-cement goal. As a solution to this problem, cementing was performed in stages, using specialty tools. However, during these operations, the stage tool did not work properly, wasting rig time and resulting in unsuccessful cement placement. To overcome this issue, the operator decided to cement the section in a single stage, preceded by a novel aqueous spacer system that aids in strengthening weak formations and controlling circulation losses. Before the operation, laboratory testing was conducted to ensure the spacer system's performance in weak, porous formations and better understand its mechanism. This paper will outline the laboratory testing, modeling and engineering design that preceded this successful single stage cementing job in a horizontal wellbore, with a final ECD calculated to be 0.12 g/cm3 (1.00 lb/gal) higher than the FIT-estimated figure.


2009 ◽  
Vol 78 (3) ◽  
pp. 177-191 ◽  
Author(s):  
Thomas Gentzis ◽  
Nathan Deisman ◽  
Richard J. Chalaturnyk

2000 ◽  
Vol 15 (04) ◽  
pp. 274-283 ◽  
Author(s):  
P.J. van den Hoek ◽  
A.P. Kooijman ◽  
P. de Bree ◽  
C.J. Kenter ◽  
Z. Zheng ◽  
...  

2020 ◽  
Vol 10 (2) ◽  
pp. 36-53
Author(s):  
Hussein Saeed Almalikee ◽  
Fahad M. Al-Najm

Directional and horizontal wellbore profiles and optimization of trajectory to minimizeborehole problems are considered the most important part in well planning and design. Thisstudy introduces four types of directional and horizontal wells trajectory plans for Rumailaoilfield by selecting the suitable kick off point (KOP), build section, drop section andhorizontal profile. In addition to the optimized inclination and orientation which wasselected based on Rumaila oilfield geomechanics and wellbore stability analysis so that theoptimum trajectory could be drilled with minimum wellbore instability problems. The fourrecommended types of deviated wellbore trajectories include: Type I (also called Build andHold Trajectory or L shape) which target shallow to medium reservoirs with lowinclination (20o) and less than 500m step out, Type II (S shape) that can be used topenetrate far off reservoir vertically, Type III (also called Deep Kick off wells or J shape)these wells are similar to the L shape profile except the kickoff point is at a deeper depth,and design to reach far-off targets (>500m step out) with more than 30o inclination, andfinally Type IV (horizontal) that penetrates the reservoir horizontally at 90o. The study alsorecommended the suitable drilling mud density that can control wellbore failure for the fourtypes of wellbore trajectory.


2021 ◽  
Author(s):  
Sukru Merey ◽  
Can Polat ◽  
Tuna Eren

Abstract Currently, many horizontal wells are being drilled in Dadas shales of Turkey. Dadas shales have both oil (mostly) and gas potentials. Thus, hydraulic fracturing operations are being held to mobilize hydrocarbons. Up to 1000 m length horizontal wells are drilled for this purpose. However, there is not any study analyzing wellbore stability and reservoir geomechanics in the conditions of Dadas shales. In this study, the directions of horizontal wells, wellbore stability and reservoir geomechanics of Dadas shales were designed by using well log data. In this study, the python code developed by using Kirsch equations was developed. With this python code, it is possible to estimate unconfined compressive strength in along wellbore at different deviations. By analyzing caliper log, density and porosity logs of Dadas shales, vertical stress of Dadas shales was estimated and stress polygon for these shale was prepared in this study. Then, optimum direction of horizontal well was suggested to avoid any wellbore stability problems. According to the results of this study, high stresses are seen in horizontal directions. In this study, it was found that the maximum horizontal stress in almost the direction of North-South. The results of this study revealed that direction of maximum horizontal stress and horizontal well direction fluid affect the wellbore stability significantly. Thus, in this study, better horizontal well design was made for Dadas shales. Currently, Dadas shales are popular in Turkey because of its oil and gas potential so horizontal drilling and hydraulic fracturing operations are being held. However, in literature, there is no study about horizontal wellbore designs for Dadas shales. This study will be novel and provide information about the horizontal drilling design of Dadas shales.


1996 ◽  
Author(s):  
H. Rodriguez ◽  
L.S-K. Fung ◽  
R. Silva ◽  
L. Zerpa ◽  
R.G. Wan

2009 ◽  
Author(s):  
L.M. Warlick ◽  
H.H. Abass ◽  
M.R. Khan ◽  
C.H. Pardo Techa ◽  
A.M. Tahini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document