Design of Horizontal Wellbore in Dadas Shales of Turkey by Considering Wellbore Stability and Reservoir Geomechanics

2021 ◽  
Author(s):  
Sukru Merey ◽  
Can Polat ◽  
Tuna Eren

Abstract Currently, many horizontal wells are being drilled in Dadas shales of Turkey. Dadas shales have both oil (mostly) and gas potentials. Thus, hydraulic fracturing operations are being held to mobilize hydrocarbons. Up to 1000 m length horizontal wells are drilled for this purpose. However, there is not any study analyzing wellbore stability and reservoir geomechanics in the conditions of Dadas shales. In this study, the directions of horizontal wells, wellbore stability and reservoir geomechanics of Dadas shales were designed by using well log data. In this study, the python code developed by using Kirsch equations was developed. With this python code, it is possible to estimate unconfined compressive strength in along wellbore at different deviations. By analyzing caliper log, density and porosity logs of Dadas shales, vertical stress of Dadas shales was estimated and stress polygon for these shale was prepared in this study. Then, optimum direction of horizontal well was suggested to avoid any wellbore stability problems. According to the results of this study, high stresses are seen in horizontal directions. In this study, it was found that the maximum horizontal stress in almost the direction of North-South. The results of this study revealed that direction of maximum horizontal stress and horizontal well direction fluid affect the wellbore stability significantly. Thus, in this study, better horizontal well design was made for Dadas shales. Currently, Dadas shales are popular in Turkey because of its oil and gas potential so horizontal drilling and hydraulic fracturing operations are being held. However, in literature, there is no study about horizontal wellbore designs for Dadas shales. This study will be novel and provide information about the horizontal drilling design of Dadas shales.

2015 ◽  
Author(s):  
Fen Yang ◽  
Larry K. Britt ◽  
Shari Dunn-Norman

Abstract Since the late 1980's when Maersk published their work on multiple fracturing of horizontal wells in the Dan Field, the use of transverse multiple fractured horizontal wells has become the completion of choice and become the “industry standard” for unconventional and tight oil and tight gas reservoirs. Today approximately sixty percent of all wells drilled in the United States are drilled horizontally and nearly all of them are multiple fractured. Because a horizontal well adds additional cost and complexity to the drilling, completion, and stimulation of the well we need to fully understand anything that affects the cost and complexity. In other words, we need to understand the affects of the principal stresses, both direction and magnitude, on the drilling completion, and stimulation of these wells. However, little work has been done to address and understand the relationship between the principal stresses and the lateral direction. This paper has as its goal to fundamentally address the question, in what direction should I drill my lateral? Do I drill it in the direction of the maximum horizontal stress (longitudinal) or do I drill it in the direction of the minimum horizontal stress (transverse)? The answer to this question relates directly back to the title of this paper and please "Don't let your land man drive that decision." This paper focuses on the horizontal well's lateral direction (longitudinal or transverse fracture orientation) and how that direction influences productivity, reserves, and economics of horizontal wells. Optimization studies using a single phase fully three dimensional numeric simulator including convergent non-Darcy flow were used to highlight the importance of lateral direction as a function of reservoir permeability. These studies, conducted for both oil and gas, are used to identify the point on the permeability continuum where longitudinal wells outperform transverse wells. The simulations compare and contrast the transverse multiple fractured horizontal well to longitudinal wells based on the number of fractures and stages. Further, the effects of lateral length, fracture half-length, and fracture conductivity were investigated to see how these parameters affected the decision over lateral direction in both oil and gas reservoirs. Additionally, how does completion style affect the lateral direction? That is, how does an open hole completion compare to a cased hole completion and should the type of completion affect the decision on in what direction the lateral should be drilled? These simulation results will be used to discuss the various horizontal well completion and stimulation metrics (rate, recovery, and economics) and how the choice of metrics affects the choice of lateral direction. This paper will also show a series of field case studies to illustrate actual field comparisons in both oil and gas reservoirs of longitudinal versus transverse horizontal wells and tie these field examples and results to the numeric simulation study. This work benefits the petroleum industry by: Establishing well performance and economic based criteria as a function of permeability for drilling longitudinal or transverse horizontal wells,Integrating the reservoir objectives and geomechanic limitations into a horizontal well completion and stimulation strategy,Developing well performance and economic objectives for horizontal well direction (transverse versus longitudinal) and highlighting the incremental benefits of various completion and stimulation strategies.


2021 ◽  
Author(s):  
Rida Mohamed Elgaddafi ◽  
Victor Soriano ◽  
Ramadan Ahmed ◽  
Samuel Osisanya

Abstract Horizontal well technology is one of the major improvements in reservoir stimulation. Planning and execution are the key elements to drill horizontal wells successfully, especially through depleted formations. As the reservoir has been producing for a long time, pore pressure declines, resulting in weakening hydrocarbon-bearing rocks. Drilling issues such as wellbore stability, loss circulation, differential sticking, formation damage remarkably influenced by the pore pressure decline, increasing the risk of losing part or even all the horizontal interval. This paper presents an extensive review of the potential issues and solutions associated with drilling horizontal wells in depleted reservoirs. After giving an overview of the depleted reservoir characteristics, the paper systematically addresses the major challenges that influence drilling operations in depleted reservoirs and suggests solutions to avoid uncontrolled risks. Then, the paper evaluates several real infill drilling operations through depleted reservoirs, which were drilled in different oilfields. The economic aspect associated with potential risks for drilling a horizontal well in depleted reservoirs is also discussed. The most updated research and development findings for infill drilling are summarized in the article. It is recommended to use wellbore strengthening techniques while drilling a horizontal well through highly depleted formations. This will allow using higher mud weight to control unstable shales while drilling through the production zone. Managed Pressure Drilling should be considered as the last option for highly depleted formations because it will require a greater level of investment which is not going to have a superior rate of return due to the lack of high deliverability of the reservoir. Using rotary steerable systems is favored to reduce risks related to drilling through depleted formations. Precise analysis of different drilling programs allows the drilling team to introduce new technology to reduce cost, improve drilling efficiency and maximize profit. It is the responsibility of the drilling engineer to evaluate different scenarios with all the precautions needed during the planning stage to avoid unexpected issues. The present market conditions and the advancement in technologies for drilling horizontal wells increase the feasibility of producing the depleted reservoirs economically. This paper highlights the challenges in drilling horizontal wells in highly depleted reservoirs and provides means for successfully drilling those wells to reduce risks while drilling


2013 ◽  
Vol 1 (2) ◽  
pp. SB27-SB36 ◽  
Author(s):  
Kui Zhang ◽  
Yanxia Guo ◽  
Bo Zhang ◽  
Amanda M. Trumbo ◽  
Kurt J. Marfurt

Many tight sandstone, limestone, and shale reservoirs require hydraulic fracturing to provide pathways that allow hydrocarbons to reach the well bore. Most of these tight reservoirs are now produced using multiple stages of fracturing through horizontal wells drilled perpendicular to the present-day azimuth of maximum horizontal stress. In a homogeneous media, the induced fractures are thought to propagate perpendicularly to the well, parallel to the azimuth of maximum horizontal stress, thereby efficiently fracturing the rock and draining the reservoir. We evaluated what may be the first anisotropic analysis of a Barnett shale-gas reservoir after extensive hydraulic fracturing and focus on mapping the orientation and intensity of induced fractures and any preexisting factures, with the objective being the identification of reservoir compartmentalization and bypassed pay. The Barnett Shale we studied has near-zero permeability and few if any open natural fractures. We therefore hypothesized that anisotropy is therefore due to the regional northeast–southwest maximum horizontal stress and subsequent hydraulic fracturing. We found the anisotropy to be highly compartmentalized, with the compartment edges being defined by ridges and domes delineated by the most positive principal curvature [Formula: see text]. Microseismic work by others in the same survey indicates that these ridges contain healed natural fractures that form fracture barriers. Mapping such heterogeneous anisotropy field could be critical in planning the location and direction of any future horizontal wells to restimulate the reservoir as production drops.


2019 ◽  
Vol 3 (1) ◽  
pp. 1-14
Author(s):  
Miriam R. Aczel ◽  
Karen E. Makuch

High-volume hydraulic fracturing combined with horizontal drilling has “revolutionized” the United States’ oil and gas industry by allowing extraction of previously inaccessible oil and gas trapped in shale rock [1]. Although the United States has extracted shale gas in different states for several decades, the United Kingdom is in the early stages of developing its domestic shale gas resources, in the hopes of replicating the United States’ commercial success with the technologies [2, 3]. However, the extraction of shale gas using hydraulic fracturing and horizontal drilling poses potential risks to the environment and natural resources, human health, and communities and local livelihoods. Risks include contamination of water resources, air pollution, and induced seismic activity near shale gas operation sites. This paper examines the regulation of potential induced seismic activity in Oklahoma, USA, and Lancashire, UK, and concludes with recommendations for strengthening these protections.


2021 ◽  
Author(s):  
Abu M. Sani ◽  
Hatim S. AlQasim ◽  
Rayan A. Alidi

Abstract This paper presents the use of real-time microseismic (MS) monitoring to understand hydraulic fracturing of a horizontal well drilled in the minimum stress direction within a high-temperature high-pressure (HTHP) tight sandstone formation. The well achieved a reservoir contact of more than 3,500 ft. Careful planning of the monitoring well and treatment well setup enabled capture of high quality MS events resulting in useful information on the regional maximum horizontal stress and offers an understanding of the fracture geometry with respect to clusters and stage spacing in relation to fracture propagation and growth. The maximum horizontal stress based on MS events was found to be different from the expected value with fracture azimuth off by more than 25 degree among the stages. Transverse fracture propagation was observed with overlapping MS events across stages. Upward fracture height growth was dominant in tighter stages. MS fracture length and height in excess of 500 ft and 100 ft, respectively, were created for most of the stages resulting in stimulated volumes that are high. Bigger fracture jobs yielded longer fracture length and were more confined in height growth. MS events fracture lengths and heights were found to be on average 1.36 and 1.30 times, respectively, to those of pressure-match.


2021 ◽  
Author(s):  
Aleksander Valerievich Miroshnichenko ◽  
Valery Alekseevich Korotovskikh ◽  
Timur Ravilevich Musabirov ◽  
Aleksei Eduardovich Fedorov ◽  
Khakim Khalilovich Suleimanov

Abstract The deterioration of the reservoir properties of potential oil and gas bearing areas on mature and green fields, as well as the increase in the volume of hard-to-recover reserves on low-permeable reservoirs set us new challenges in searching and using effective development technologies to maintain and even increase the oil production levels. Based on successful international experience, Russian oil and gas companies use horizontal wells (HW) with multi-stage hydraulic fracturing (MSHF) for the cost-effective development of low-permeable reservoirs. Thus, since the first pilot works of drilling technologies and completion of HW with MSHF in 2011, at the beginning of 2020, over 1,200 HW with MSHF were drilled and came on stream at the fields of LLC RN-Yuganskneftegaz, about half of which are at the exploitation play AS10-12 of the northern license territory (NLT) of the Priobskoye field. In searching the best technologies and engineering solutions, the company tested different lengths of horizontal section of HW, the number of hydraulic fracturing (HF) stages and distances between hydraulic fracturing ports, as well as different specific mass of the proppant per frac port. Recently, there has been a tendency in design solutions to increase the length of the HWs and the number of hydraulic fractures with a decreasing distance between the frac ports and a decreasing specific mass of the proppant per frac port. This work studies the actual and theoretical efficiency of HW with MSHF of various designs (different lengths of horizontal section of HW and the number of HF stages) and to assess the viability of increasing the technological complexity, as well as to analyze the actual impact of loading the proppant mass per port on performing HW with MSHF. The study is based on the results of the analysis of the factual experience accumulated over the entire history of the development of the exploitation play AS10-12 of the NLT of the Priobskoye field of the Rosneft Company. In studying the viability of increasing the technological complexity, especially, increasing the length of horizontal section of HW, increasing the number of HF stages, and reducing the distance between the frac ports: we discovered the typical methodological errors made in analyzing the efficiency of wells of various designs; we developed the methodology for analysis of the actual multiplicity of indicators of wells of various designs, in particular, HW with MSHF relative to deviated wells (DW) with HF; we carried out the statistical analysis of the actual values of the multiplicity of performance indicators and completion parameters of HW with MSHF of various designs relative to the surrounding DW with HF of the exploitation play AS10-12 of the NLT of the Priobskoye field; we performed the theoretical calculation of the multiplicity of the productivity coefficient for the HW with MSHF of various designs relative to DW with HF for the standard development system of the exploitation play AS10-12 of the NLT of the Priobskoye field; we compared the actual and theoretical results. The paper also presents the results of studying the actual effect of changes of proppant's mass per port on performance indicators of HW with MSHF of the same design and with an increase in the number of fractures of the hydraulic fracturing without changing the length of horizontal section of HW. As for performance indicators, being the basis for estimating the efficiency of HW with MSHF of various designs, we used the productivity index per meter of the effective reservoir thickness and the cumulative fluid production per meter of the effective reservoir thickness per a certain period of operation. And as the completion parameters, we used the length of the horizontal section of HW, the number of HF stages, the distance between the frac ports, and the specific mass of the proppant per meter of the effective reservoir thickness per frac port. The results of this work are the determining vector of development for future design decisions in improving the efficiency of HW with MSHF.


2021 ◽  
Author(s):  
Ruslan Rubikovich Urazov ◽  
Alfred Yadgarovich Davletbaev ◽  
Alexey Igorevich Sinitskiy ◽  
Ilnur Anifovich Zarafutdinov ◽  
Artur Khamitovich Nuriev ◽  
...  

Abstract This research presents a modified approach to the data interpretation of Rate Transient Analysis (RTA) in hydraulically fractured horizontal well. The results of testing of data interpretation technique taking account of the flow allocation in the borehole according to the well logging and to the injection tests outcomes while carrying out hydraulic fracturing are given. In the course of the interpretation of the field data the parameters of each fracture of hydraulic fracturing were selected with control for results of well logging (WL) by defining the fluid influx in the borehole.


2021 ◽  
Author(s):  
Anna Vladimirovna Norkina ◽  
Iaroslav Olegovich Simakov ◽  
Yuriy Anatoljevich Petrakov ◽  
Alexey Evgenjevich Sobolev ◽  
Oleg Vladimirovich Petrashov ◽  
...  

Abstract This article is a continuation of the work on geomechanically calculations for optimizing the drilling of horizontal wells into the productive reservoir M at the Boca de Haruco field of the Republic of Cuba, presented in the article SPE-196897. As part of the work, an assessment of the stress state and direction was carried out using geological and geophysical information, an analysis of the pressure behavior during steam injections, cross-dipole acoustics, as well as oriented caliper data in vertical wells. After the completion of the first part of the work, the first horizontal wells were successfully drilled into the M formation. According to the recommendations, additional studies were carried out: core sampling and recording of micro-imager logging in the deviated sections. Presence of wellbore failures at the inclined sections allowed to use the method of inverse in-situ stress modeling based on image logs interpretation. The classification of wellbore failures by micro-imager logging: natural origin and violations of technogenic genesis is carried out. The type of breakout is defined. The result of the work was the determination of the stress state and horizontal stresses direction. In addition, the article is supplemented with the calculation of the maximum horizontal stress through the stress regime identifier factor.


2021 ◽  
Author(s):  
David Russell ◽  
Price Stark ◽  
Sean Owens ◽  
Awais Navaiz ◽  
Russell Lockman

Abstract Reducing well costs in unconventional development while maintaining or improving production continues to be important to the success of operators. Generally, the primary drivers for oil and gas production are treatment fluid volume, proppant mass, and the number of stages or intervals along the well. Increasing these variables typically results in increased costs, causing additional time and complexity to complete these larger designs. Simultaneously completing two wells using the same volumes, rates, and number of stages as for any previous single well, allows for more lateral length or volume completed per day. This paper presents the necessary developments and outcomes of a completion technique utilizing a single hydraulic fracturing spread to simultaneously stimulate two or more horizontal wells. The goal of this technique is to increase operational efficiency, lower completion cost, and reduce the time from permitting a well to production of that well—without negatively impacting the primary drivers of well performance. To date this technique has been successfully performed in both the Bakken and Permian basins in more than 200 wells, proving its success can translate to other unconventional fields and operations. Ultimately, over 200 wells were successfully completed simultaneously, resulting in a 45% increase in completion speed and significant decrease in completion costs, while still maintaining equivalent well performance. This type of simultaneous completion scenario continues to be implemented and improved upon to improve asset returns.


Geophysics ◽  
2021 ◽  
pp. 1-97
Author(s):  
kai lin ◽  
Bo Zhang ◽  
Jianjun Zhang ◽  
Huijing Fang ◽  
Kefeng Xi ◽  
...  

The azimuth of fractures and in-situ horizontal stress are important factors in planning horizontal wells and hydraulic fracturing for unconventional resources plays. The azimuth of natural fractures can be directly obtained by analyzing image logs. The azimuth of the maximum horizontal stress σH can be predicted by analyzing the induced fractures on image logs. The clustering of micro-seismic events can also be used to predict the azimuth of in-situ maximum horizontal stress. However, the azimuth of natural fractures and the in-situ maximum horizontal stress obtained from both image logs and micro-seismic events are limited to the wellbore locations. Wide azimuth seismic data provides an alternative way to predict the azimuth of natural fractures and maximum in-situ horizontal stress if the seismic attributes are properly calibrated with interpretations from well logs and microseismic data. To predict the azimuth of natural fractures and in-situ maximum horizontal stress, we focus our analysis on correlating the seismic attributes computed from pre-stack and post-stack seismic data with the interpreted azimuth obtained from image logs and microseismic data. The application indicates that the strike of the most positive principal curvature k1 can be used as an indicator for the azimuth of natural fractures within our study area. The azimuthal anisotropy of the dominant frequency component if offset vector title (OVT) seismic data can be used to predict the azimuth of maximum in-situ horizontal stress within our study area that is located the southern region of the Sichuan Basin, China. The predicted azimuths provide important information for the following well planning and hydraulic fracturing.


Sign in / Sign up

Export Citation Format

Share Document