Effect of Gas/Oil Capillary Pressure on Minimum Miscibility Pressure for Tight Reservoirs

SPE Journal ◽  
2019 ◽  
Vol 25 (02) ◽  
pp. 820-831 ◽  
Author(s):  
Kaiyi Zhang ◽  
Bahareh Nojabaei ◽  
Kaveh Ahmadi ◽  
Russell T. Johns

Summary Shale and tight reservoir rocks have pore throats on the order of nanometers, and, subsequently, a large capillary pressure. When the permeability is ultralow (k < 200 nd), as in many shale reservoirs, diffusion might dominate over advection, so that the gas injection might no longer be controlled by the multicontact minimum miscibility pressure (MMP). For gasfloods in tight reservoirs, where k > 200 nd and capillary pressure is still large, however, advection likely dominates over diffusive transport, so that the MMP once again becomes important. This paper focuses on the latter case to demonstrate that the capillary pressure, which has an impact on the fluid pressure/volume/temperature (PVT) behavior, can also alter the MMP. The results show that the calculation of the MMP for reservoirs with nanopores is affected by the gas/oil capillary pressure, owing to alteration of the key tie lines in the displacement; however, the change in the MMP is not significant. The MMP is calculated using three methods: the method of characteristics (MOC); multiple mixing cells; and slimtube simulations. The MOC method relies on solving hyperbolic equations, so the gas/oil capillary pressure is assumed to be constant along all tie lines (saturation variations are not accounted for). Thus, the MOC method is not accurate away from the MMP but becomes accurate as the MMP is approached when one of the key tie lines first intersects a critical point (where the capillary pressure then becomes zero, making saturation variations immaterial there). Even though the capillary pressure is zero for this key tie line, its phase compositions (and, hence, the MMP) are impacted by the alteration of all other key tie lines in the composition space by the gas/oil capillary pressure. The reason for the change in the MMP is illustrated graphically for quaternary systems, in which the MMP values from the three methods agree well. The 1D simulations (typically slimtube simulations) show an agreement with these calculations as well. We also demonstrate the impact of capillary pressure on CO2-MMP for real reservoir fluids. The effect of large gas/oil capillary pressure on the characteristics of immiscible displacements, which occur at pressures well below the MMP, is discussed.

Geophysics ◽  
2016 ◽  
Vol 81 (4) ◽  
pp. IM57-IM70 ◽  
Author(s):  
Jingling Xu ◽  
Baoying Zhang ◽  
Yuxing Qin ◽  
Guangwei Cao ◽  
Hui Zhang

Identifying fractures and evaluating the parameters of tight reservoirs are important problems. Developing methods to accurately interpret logging data for tight sandstone and shale reservoirs is of great significance, especially when only conventional logging data can be obtained. Identifying natural fractures with limited available data is challenging. Comparing and analyzing the log response characteristics of the natural fracture zone of a tight reservoir indicate that acoustic (AC) and density (DEN) data are highly sensitive to fractures in tight reservoirs. First, we have obtained the characteristics and differences of the log response of natural fractures. Second, we established a model that is based on these sensitive log-response characteristics (AC and DEN) to identify fractures (correlation coefficient method with window lengths), and we analyzed the cut-off of the correlation coefficient. Then, we established a model (the revised Wyllie difference method) to characterize the fracture porosity based on the difference in the sensitive log responses of the fracture (the difference in the AC and DEN curves). Finally, we applied this methodology to a case study of a tight reservoir in the Sichuan Basin, China, and the AC-DEN correlation coefficient and fracture porosity are calculated. The AC-DEN correlation coefficient adequately identifies fractures, and the calculated fracture porosity is consistent with the fracture porosity from full borehole microresistivity imaging. Thus, this method is applicable to evaluating fractures in tight-fracture reservoirs.


SPE Journal ◽  
2011 ◽  
Vol 16 (04) ◽  
pp. 743-750 ◽  
Author(s):  
Kaveh Ahmadi ◽  
Russell T. Johns ◽  
Kristian Mogensen ◽  
Rashed Noman

Summary An accurate minimum miscibility pressure (MMP) is one of the key factors in miscible-gasflood design. There is a variety of experimental and analytical methods to determine the MMP, but the most-reliable methods are slimtube experiments, 1D slimtube simulations, mixing-cell models, and the fast key-tie-line approach using the method of characteristics (MOC). Direct comparisons of all these methods generally agree well, but there are cases in which they do not. No explanation has yet been given for these anomalies, although the MMP is critically important to recovery. The focus of this paper is to explain when current MOC results assuming that shocks exist from one key tie line to the next may not be reliable, and how to identify when this is the case. We demonstrate, using fluid characterizations from Middle East oils, that the MMPs using this MOC method can be more than 6,500 psia greater than those calculated using a recently developed mixing-cell method. The observed differences in the MMP increase substantially as the API gravity of the oil decreases, likely the result of the onset of L1-L2-V behavior. We show that the key tie lines determined using this MOC method do not control miscibility for such cases. We explain the reasons for these differences using simplified pseudoternary models and show how to determine when an error exists. We also offer a way to correct the MMP predictions using the MOC for these complex gas/oil displacements without solving for the complete compositional path.


Georesursy ◽  
2020 ◽  
Vol 22 (1) ◽  
pp. 13-21
Author(s):  
Olga A. Lobanova ◽  
Ilya M. Indrupskiy

It is known that in shale and tight reservoirs, adsorption significantly affects hydrocarbon reserves and the processes of their production. This fact is reflected in the methods for calculating reserves and evaluating the production potential of shale and tight deposits. To calculate the initial content of the components, multi-component adsorption models are used. The impact on hydrocarbon production is taken into account through special dynamic permeability models for shale reservoirs. According to laboratory studies, adsorption can lead to significant changes not only in volume, but also in the composition of the produced fluids and their phase behavior. Previously, this effect could not be reproduced on the basis of mathematical models. The method proposed in this article allows modeling the phase behavior of a hydrocarbon mixture taking into account the dynamic adsorption/desorption of components in the process of pressure change. The method is applicable in the simulations of multi-component (compositional) flow and PVT-modeling on real objects. The phase behavior of hydrocarbons with pressure depletion in shale reservoirs has been simulated. It is shown that the neglect of the dynamic effect of adsorption / desorption leads to significant errors in predicting the saturation pressure, as well as the dynamics of changes in the composition of the produced fluid and of hydrocarbon component recovery.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1998
Author(s):  
Haishan Luo ◽  
Kishore K. Mohanty

Unlocking oil from tight reservoirs remains a challenging task, as the existence of fractures and oil-wet rock surfaces tends to make the recovery uneconomic. Injecting a gas in the form of a foam is considered a feasible technique in such reservoirs for providing conformance control and reducing gas-oil interfacial tension (IFT) that allows the injected fluids to enter the rock matrix. This paper presents a modeling strategy that aims to understand the behavior of near-miscible foam injection and to find the optimal strategy to oil recovery depending on the reservoir pressure and gas availability. Corefloods with foam injection following gas injection into a fractured rock were simulated and history matched using a compositional commercial simulator. The simulation results agreed with the experimental data with respect to both oil recovery and pressure gradient during both injection schedules. Additional simulations were carried out by increasing the foam strength and changing the injected gas composition. It was found that increasing foam strength or the proportion of ethane could boost oil production rate significantly. When injected gas gets miscible or near miscible, the foam model would face serious challenges, as gas and oil phases could not be distinguished by the simulator, while they have essentially different effects on the presence and strength of foam in terms of modeling. We provide in-depth thoughts and discussions on potential ways to improve current foam models to account for miscible and near-miscible conditions.


2013 ◽  
Vol 671-674 ◽  
pp. 1399-1402
Author(s):  
Ying Sun ◽  
Jian Gang Sun ◽  
Li Fu Cui

To study the impact of floating roof on seismic response of vertical storage tank structure system subjected to seismic excitation, select 150000m3 storage tanks as research object, and the finite element analysis model of storage tanks with and without floating roof were established respectively. The seismic response of these two types of structure in different site conditions and seismic intensity were calculated and the numerical solutions were compared. The results show that floating roof has little impact on base shear and base moment in different site conditions and seismic intensity. Floating roof can effectively reduce the sloshing wave height. The influence of floating roof on dynamic fluid pressure decreases with the increase of seismic intensity, which is less affected by ground conditions.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3010
Author(s):  
Weihong Peng ◽  
Menglin Du ◽  
Feng Gao ◽  
Xuan Dong ◽  
Hongmei Cheng

Hydraulic fracturing (HF) is widely used in shale gas development, which may cause some heavy metals release from shale formations. These contaminants could transport from the fractured shale reservoirs to shallow aquifers. Thus, it is necessary to assess the impact of pollution in shallow aquifers. In this paper, a new analysis model, considering geological distributions, discrete natural fractures (NFs) and faults, is developed to analyze the migration mechanism of contaminants. Furthermore, the alkali erosion of rock caused by high-pH drilling of fluids, is considered in this paper. The numerical results suggest that both NFs and alkali erosion could reduce the time required for contaminants migrating to aquifers. When NFs and alkali erosion are both considered, the migration time will be shortened by 51 years. Alkali erosion makes the impact of NFs, on the contaminant migration, more significant. The migration time decreases with increasing pH values, while the accumulation is on the opposite side. Compared with pH 12.0, the migration time would be increased by 45 years and 29 years for pH 11.0 and 11.5, respectively. However, the migration time for pH 12.5 and 13.0 were found to be decreased by 82 years and 180 years, respectively. Alkali erosion could increase the rock permeability, and the elevated permeability would further enhance the migration velocity of the contaminants, which might play a major role in assessing the potential contamination of shallow aquifers.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Sorin-Cristian Vlădescu ◽  
Carmine Putignano ◽  
Nigel Marx ◽  
Tomas Keppens ◽  
Tom Reddyhoff ◽  
...  

New apparatus is described to simulate a compliant seal interface, allowing the percolation of liquid to be viewed by a fluorescence microscope. A model, based on the boundary element (BE) methodology, is used to provide a theoretical explanation of the observed behavior. The impact of contact pressure, roughness, and surface energy on percolation rates are characterized. For hydrophilic surfaces, percolation will always occur provided a sufficient number of roughness length scales are considered. However, for hydrophobic surfaces, the inlet pressure must overcome the capillary pressure exerted at the minimum channel section before flow can occur.


Sign in / Sign up

Export Citation Format

Share Document