Using MPD and Conventional Methods to Address a Well Control Event in a Deepwater Exploration Well

Author(s):  
Sharief Moghazy ◽  
Roger Van Noort ◽  
Anton Kozlov ◽  
Inam Haq ◽  
Thiago Silva ◽  
...  
2021 ◽  
Vol 73 (04) ◽  
pp. 32-33
Author(s):  
Stephen Rassenfoss

A blowout in Ohio in 2018 was the first ever where the emissions could be measured from space, though it was at best a rough estimate based on data gathered on the 13th day after the XTO Energy well control event began. A year later, a blowout of a Devon well near Victoria, Texas, was measured starting the day after it occurred, with data collected on 3 days over the next 2 weeks. Using the measurement of carbon dioxide, it was estimated that the flare was 87% effective in burning about 4,800 metric tons of the leaking methane gas. Emission estimates varied wildly, and both the Ohio (Pandey et al. 2019) and Texas (Cusworth, Duren, Thorpe et al. 2020) efforts to use satellites led to technical papers to consider how they addressed this challenge. For those with blowouts next year, chances are a lot better methane-emission data would be available because of the launch of a constellation of specialized methane-measurement satellites by the two groups that played a key role in the earlier tests. In presentations at CERAWeek by IHS Markit, GHGSat said it has two methane-detection satellites in orbit and plans the launch of eight more, and the Environmental Defense Fund (EDF) said it is moving forward with the launch of its first one next year. Both are aiming to cover the lion’s share of oil and gas operations and measure the flow rate of the gas rather than concentrations in the atmosphere. They said they can do that far more accurately than was possible with the general-purpose climate observation satellites by focusing their equipment on the wavelength of methane. GHGSat said its satellites, which are about the size of a microwave oven, can measure the potent greenhouse gas from an elevation of 500 km and up. They are placed in polar orbit, which allows them to cover the globe every 2 weeks as the Earth rotates. Launching more satellites will allow more frequent looks. There are differences in the GHGSat and EDF designs, reflecting their contrasting missions. The Canadian company GHGSat, whose satellite initiative was initially supported by Schlumberger and the Oil and Gas Climate Initiative, is building tiny satellites with extremely high resolution to serve clients in the oil and mining businesses. During the presentation, Stéphane Germain, chief executive officer of GHGSat, displayed an image and said its satellites can tell if the methane is “coming from a particular facility and even tell what part of the facility it is coming from.” The company also sells the services of similarly equipped planes that can create more-detailed images using similar equipment at elevations of 3000 m and higher. EDF raised $100 million from donors, including Elon Musk, and has hired Raytheon to build a satellite equipped with a detector from Ball Aerospace. It can survey an area that is 260 km wide. That is far wider than the GHGSat satellites, which have the advantage of being able to zero in on smaller details when looking for leaks. The environmental group points out its device is more sensitive to methane emissions, detecting levels down to two parts per billion.


2014 ◽  
Vol 2 (1) ◽  
pp. SB69-SB77 ◽  
Author(s):  
Niven Shumaker ◽  
Daniel Haymond ◽  
Joe Martin

A geopressure interpretation technique known as the seismic velocity method is a common workflow in which shale compaction functions are characterized at offset control wells, matched to interval seismic velocities, and then used to predictively calculate geopressure away from well control. The seismic velocity method is used to interpret the expected geopressure profile at the Deep Blue subsalt exploration well in Green Canyon 723 in the deep water Gulf of Mexico. The Deep Blue prospect is distinct from other prospects in the play fairway in that the prospective section is overlain by a salt withdrawal minibasin, whereas the offsetting fields are positioned either along the flanks of minibasins or under a thick allochthonous salt canopy. Predrill geopressure interpretations using numerous tomographic imaging velocity data sets shows a large degree of consistency with the magnitude of geopressure encountered in offsetting supra salt and subsalt fields. Results from the Deep Blue 1 exploration well indicate the predrill geopressure interpretation from interval seismic velocities failed to anticipate the extreme degree overpressure encountered in the subsalt section of the well due to poor deep velocity resolution and an “unloaded” compaction signature. The magnitude of overpressure in the primary section is attributed to the emplacement of an unconformable halokinetic sequence over the primary subsalt basin. An interpretive paradigm is described in which the Deep Blue pressure cell is created through two halokinetic episodes: (1) rapid progradation of a salt canopy followed by (2) subsequent salt withdrawal and emplacement of an overlying minibasin. The linkage between halokinetic sequences, burial history, and the development of overpressure can be used to predictively characterize subsalt geopressure environments.


2021 ◽  
Author(s):  
Bao Ta Quoc ◽  
Harpreet Kaur Dalgit Singh ◽  
Tuan Nguyen Le Quang ◽  
Dien Nguyen Van ◽  
Essam Sammat

Abstract A managed pressure drilling (MPD) and early influx detection system is gaining worldwide acceptance as an enabling technology for drilling wells with challenges that can lead to tremendous nonproductive time (NPT), significant unplanned costs, and increased risk exposure. MPD counteracts the high cost of these wells by delivering significant savings when eliminating fluid losses or well control events that cause NPT. MPD technology has proven that is used to not only reduce NPT but also enable access to reserves previously considered un-drillable. In this case history, MPD helped to reach reserves that could not be reached in the first well. Client planned to drill the well A, which is its second offshore exploration well. Early on in 2019, the campaign encountered significant problems because of high temperatures and a narrow pore-pressure/fracture-pressure (PP/FP) gradient window. Additionally, using conventional drilling methods in offset wells led to problems relating to kicks, loss scenarios, and stuck pipe. Before drilling the second exploration well, the relevant parties considered that the first well-presented multiple drilling issues, and they drew from past success. The latter job had ended with reaching all the well targets despite high-pressure/high-temperature (HP/HT) conditions using a continuous circulating device in conjunction with an MPD system. Therefore, this combination of technologies was chosen to drill the well A. The operator used the MPD system, from the start when drilling the 14 3/4-in × 16-in. hole section to the end when drilling the 8 1/2-in. hole section, in offshore Vietnam. Applying MPD technology on this well resulted in many benefits, including the main benefit of always controlling the bottomhole pressure through the challenging zones. MPD also helped to maintain the equivalent circulating destiny (ECD) and equivalent static density (ESD) during drilling, connections, and a logging operation to mitigate the risk of any gas breaking out at the surface and to drill the well to the desired target depth. This paper focuses on using MPD technology in conjunction with the continuous circulation system, in offshore Vietnam. It goes into detail by describing the experience and providing some of the lessons learned.


2019 ◽  
Author(s):  
Akram Nabiyev ◽  
Sagar Nauduri ◽  
Martyn Parker ◽  
Darin Fisher ◽  
David Cunningham
Keyword(s):  

Author(s):  
Neil A Munro ◽  
Andy R Myers

ABSTRACT 1141381 The Montara (2009) and Macondo (2010) incidents resulted in step change in safety for the oil & gas industry. Since then many improvements have been implemented to keep the highest standard of safety in drilling operations. Through industry collaboration subsea well response equipment not available at the time of these incidents is now globally accessible. Technology continues to be developed to provide comprehensive response capabilities. A recent area of focus for industry was how to cap an incident well in water depths less than 600 meters where vertical access may not be possible due to hydrocarbons at surface and a possible gas boil in the case of a gas well. An innovative concept was developed, manufactured and tested to deal with a loss of well control event in shallow water. The Offset Installation System (OIS) allows a capping stack to be deployed and installed on a blowing out well in shallow water, deployed and controlled by vessels offset from the incident well. In addition, the OIS can be used for debris clearance, removal of the lower marine riser package (LMRP), and deployment of other subsea response hardware. By virtue of their source control operational function capping stacks are relatively large and heavy pieces of hardware. Despite these physical characteristics, there is expectation by stakeholders and international regulators for capability to transport capping stack equipment across significant distances in an expeditious manner to respond to an incident. For remote areas of the globe, capping stacks air transported as a single unit could provide an effective solution. A key objective in responding to a subsea loss of well control event is the ability to effectively mobilise source control equipment and trained personnel to readily manage an emergency response scenario in a timely manner globally. A number of companies with a range of capabilities will be required to provide a comprehensive response. To further assist, initiatives focused on personnel resources have been developed including a global subsea response network, and continuing industry collaboration for mutual aid of personnel. This paper will provide information on the development of the global subsea response equipment inventory available to industry. Latest developments such as OIS and air freightable capping stacks for transportation to remote areas will be discussed in detail as well as the above-mentioned initiatives for personnel.


Author(s):  
R. Fikri

Jambaran Field was discovered in 2001 by J-1ST1 exploration well. The discovery well encountered steep-flanked carbonate build-up structure (Kujung Fm) that contain thick gas column and thin oil rim. To date six more wells have been drilled to unravel the geometry of the carbonate build up reservoir type. The carbonate build up which is up to 10 km length and 1 km width was deposited during Oligo-Early Miocene and sealed cap by very thick Tuban shale. This stratigraphic configuration has caused several drilling risks. First, there is a huge drop in pore pressure value between Tuban Shale and Kujung Carbonate; of up to 12.6 ppg in Tuban Shale and 8.1-11 ppg in Kujung Carbonate. Second, shale instability commonly happened during drilling Tuban shale. Third, total loss circulation, which can lead to H2S gas kick, potentially happened once penetrating Kujung Carbonate. To reduce those drilling risks, the casing ought to cover as much as Tuban Shale and as close as possible to Kujung Carbonate. During the exploration wells drilling, conventional methods such as; cutting observation, wetness-balance gas ratio, calcimetry, and mud losses have been applied to hunt the casing point as close as possible to Kujung Carbonate. Those conventional methods were successful in several well but also failed in the others. There are many other sophisticated tools developed by Service Company to serve the purpose of set casing, such as resistivity at bit. However, in our ongoing development wells drilling campaign, we utilized the combination of those conventional methods successfully to set 9-5/8” casing point as close as possible without entering Kujung Carbonate.


2020 ◽  
Author(s):  
Nafiz Tamim ◽  
Geir Karlsen ◽  
Geert van Loopik ◽  
James Pettigrew

Sign in / Sign up

Export Citation Format

Share Document