Successful Wellbore Pressure Management Using Intelligent MPD and Continuous Circulation System on an HPHT Well in Vietnam

2021 ◽  
Author(s):  
Bao Ta Quoc ◽  
Harpreet Kaur Dalgit Singh ◽  
Tuan Nguyen Le Quang ◽  
Dien Nguyen Van ◽  
Essam Sammat

Abstract A managed pressure drilling (MPD) and early influx detection system is gaining worldwide acceptance as an enabling technology for drilling wells with challenges that can lead to tremendous nonproductive time (NPT), significant unplanned costs, and increased risk exposure. MPD counteracts the high cost of these wells by delivering significant savings when eliminating fluid losses or well control events that cause NPT. MPD technology has proven that is used to not only reduce NPT but also enable access to reserves previously considered un-drillable. In this case history, MPD helped to reach reserves that could not be reached in the first well. Client planned to drill the well A, which is its second offshore exploration well. Early on in 2019, the campaign encountered significant problems because of high temperatures and a narrow pore-pressure/fracture-pressure (PP/FP) gradient window. Additionally, using conventional drilling methods in offset wells led to problems relating to kicks, loss scenarios, and stuck pipe. Before drilling the second exploration well, the relevant parties considered that the first well-presented multiple drilling issues, and they drew from past success. The latter job had ended with reaching all the well targets despite high-pressure/high-temperature (HP/HT) conditions using a continuous circulating device in conjunction with an MPD system. Therefore, this combination of technologies was chosen to drill the well A. The operator used the MPD system, from the start when drilling the 14 3/4-in × 16-in. hole section to the end when drilling the 8 1/2-in. hole section, in offshore Vietnam. Applying MPD technology on this well resulted in many benefits, including the main benefit of always controlling the bottomhole pressure through the challenging zones. MPD also helped to maintain the equivalent circulating destiny (ECD) and equivalent static density (ESD) during drilling, connections, and a logging operation to mitigate the risk of any gas breaking out at the surface and to drill the well to the desired target depth. This paper focuses on using MPD technology in conjunction with the continuous circulation system, in offshore Vietnam. It goes into detail by describing the experience and providing some of the lessons learned.

2021 ◽  
Author(s):  
Mahmoud Ahmed El-Husseiny ◽  
Samir Mohamed Khaled ◽  
Taher El-Sebaay El-Fakharany ◽  
Yehia Mohamed Al-Nadi

Abstract Although devised in 2003, managed pressure drilling (MPD) has gained widespread popularity in recent years to precisely control the annular pressure profile throughout the wellbore. Due to the relatively high cost and complexity of implementing MPD, some operators still face a challenge deciding whether or not to MPD the well. In the offshore Mediterranean of Egypt, severe to catastrophic mud losses are encountered while conventionally drilling deepwater wells through cavernous fractured carbonate gas reservoirs with a narrow pore pressure-fracture gradient (PP-FG) window, leading to the risk of not reaching the planned target depth (TD). Furthermore, treating such losses was associated with long non-productive time (NPT), massive volume consumption of cement, and lost-circulation materials (LCM), in addition to well control situations encountered several times due to loss of hydrostatic head during severe losses. Accordingly, the operator decided to abandon the conventional drilling method and implement MPD technology to drill these problematic formations. In this paper, the application of MPD is to be examined versus the conventional drilling in terms of well control events, NPT, rate of penetration (ROP), mud losses per drilled meter, LCM volume pumped, and drilling operations optimization. According to the comparative study, MPD application showed a drastic improvement in all drilling performance aspects over the conventional drilling where the mud losses per drilled meter reduced from 19.6 m3/m to 3.7m3/m (123.2 bbl/m to 23.4 bbl/m). In addition to that, a 35% reduction of NPT and also a 35% reduction of LCM pumped, and 67.2 % reduction by volume of cement pumped to cure the mud losses. Moreover, the average mechanical rate of penetration increased by 37.4%. MPD was also credited with eliminating the need for an additional contingent 7" liner which was conventionally used to isolate the thief zone. The MPD ability to precisely control bottom hole pressure during drilling with the integration of MPD early kick detection system enables the rapid response in case of mud loss or kick, eliminating kick-loss cycles, well control events, and drilling flat time to change mud density. This paper provides an advanced and in-depth study for deep-water drilling problems of a natural gas field in the East Mediterranean and presents a comprehensive analysis of the MPD application with a drilling performance assessment (average ROP, mud losses, LCM and cement volumes, well control events) emphasizing how MPD can offer a practical solution for future drilling of challenging deepwater gas wells.


2021 ◽  
Author(s):  
Dmitry Krivolapov ◽  
Taras Soroka ◽  
Artem Polyarush ◽  
Denis Lobastov ◽  
Viktor Balalaev ◽  
...  

Abstract This technical paper provides the result of utilizing MPD technology for drilling and cementing a 127 mm production liner withing the Zadonian horizon D3zd in an exploratory well of the Prohorovskoe field. The previous wells drilled with a conventional approach in the field had complicated issues such as circulation losses and well control. It was complexified with high hydrogen disulfide concentration in reservoir oil which was a health hazard to a site personnel. As a result, to eliminate all complications, resources and operational time were needed. To prevent and eliminate complications in a long wall, core drilling and well completion, managed pressure drilling (MPD) and cementing technology with semi-automatic control system was applied. The project is unique as such complicated jobs with the core drilling and cementing with MPD were executed for the first time in The Komi Republic. MPD approach allowed to figure out bottomhole safe conditions and maintain ECD within a required pressure window. It is necessary to notice that a part of the section was core drilled. Knowing the window between pore and fracture pressures safety limits, a run-in-the-hole design with further cementing job was optimized. The execution was done flawlessly without circulation losses and well control issues. In comparison to a previous well in the Prohorovskoe field, MPD allowed to shorten loss circulated mud volume from 2 2215 m3 to 0 m3 and avoid non-productive time. Through accomplished goals and lessons learned, new grounds to well owners and well services in a field development stage are broken.


2013 ◽  
Vol 821-822 ◽  
pp. 1422-1425
Author(s):  
Shi Zhu Luan ◽  
Xiao Feng Sun ◽  
Ke Lin Wang ◽  
A Xin Geng

The complexity and depth of drilling are increasing constantly, so an advanced well control technology is required, and early kick detection as the key to well control is very important. Rapid and accurate kick detection helps to eliminate kick and rebalance the wellbore pressure, which not only improves drilling operation efficiency, but also reduces the probability of blowout, well collapse and other accidents. Accordingly, this paper has analyzed the applicable conditions, advantages and shortcomings, and field applications of the existing kick detection technology including mud pit surface detection, delta flow method, liquid level monitoring in the wellbore detection, gas invasion detection, kick detection while drilling, multi-parameter comprehensive detection system and comprehensive logging detection and analysis technology, and proposed the research trends and application suggestions of kick detection technology.


2021 ◽  
Vol 6 (6) ◽  
pp. e005833
Author(s):  
Leena N Patel ◽  
Samantha Kozikott ◽  
Rodrigue Ilboudo ◽  
Moreen Kamateeka ◽  
Mohammed Lamorde ◽  
...  

Healthcare workers (HCWs) are at increased risk of infection from SARS-CoV-2 and other disease pathogens, which take a disproportionate toll on HCWs, with substantial cost to health systems. Improved infection prevention and control (IPC) programmes can protect HCWs, especially in resource-limited settings where the health workforce is scarcest, and ensure patient safety and continuity of essential health services. In response to the COVID-19 pandemic, we collaborated with ministries of health and development partners to implement an emergency initiative for HCWs at the primary health facility level in 22 African countries. Between April 2020 and January 2021, the initiative trained 42 058 front-line HCWs from 8444 health facilities, supported longitudinal supervision and monitoring visits guided by a standardised monitoring tool, and provided resources including personal protective equipment (PPE). We documented significant short-term improvements in IPC performance, but gaps remain. Suspected HCW infections peaked at 41.5% among HCWs screened at monitored facilities in July 2020 during the first wave of the pandemic in Africa. Disease-specific emergency responses are not the optimal approach. Comprehensive, sustainable IPC programmes are needed. IPC needs to be incorporated into all HCW training programmes and combined with supportive supervision and mentorship. Strengthened data systems on IPC are needed to guide improvements at the health facility level and to inform policy development at the national level, along with investments in infrastructure and sustainable supplies of PPE. Multimodal strategies to improve IPC are critical to make health facilities safer and to protect HCWs and the communities they serve.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 811-811
Author(s):  
Jennifer Deal ◽  
Nicholas Reed ◽  
David Couper ◽  
Kathleen Hayden ◽  
Thomas Mosley ◽  
...  

Abstract Hearing impairment in older adults is linked to accelerated cognitive decline and a 94% increased risk of incident dementia in population-based observational studies. Whether hearing treatment can delay cognitive decline is unknown but could have substantial clinical and public health impact. The NIH-funded ACHIEVE randomized controlled trial of 977 older adults aged 70-84 years with untreated mild-to-moderate hearing loss, is testing the efficacy of hearing treatment versus health education on cognitive decline over 3 years in community-dwelling older adults (Clinicaltrials.gov Identifier: NCT03243422.) This presentation will describe lessons learned from ACHIEVE’s unique study design. ACHIEVE is nested within a large, well-characterized multicenter observational study, the Atherosclerosis Risk in Communities Study. Such nesting within an observational study maximizes both operational and scientific efficiency. With trial results expected in 2022, this presentation will focus on the benefits gained in design and recruitment/retention, including dedicated study staff, well-established protocols, and established study staff-participant relationships. Part of a symposium sponsored by Sensory Health Interest Group.


Sign in / Sign up

Export Citation Format

Share Document