High Viscosity Friction Reducers - Potential for Fracture Damage and Impact of Brines on Proppant Transport Capability

2020 ◽  
Author(s):  
Barry Hlidek ◽  
Robert Duenckel
SPE Journal ◽  
2014 ◽  
Vol 19 (05) ◽  
pp. 974-985 ◽  
Author(s):  
Sahil Malhotra ◽  
Eric R. Lehman ◽  
Mukul M. Sharma

Summary New fracturing techniques, such as hybrid fracturing (Sharma et al. 2004), reverse-hybrid fracturing (Liu et al. 2007), and channel (HiWAY) fracturing (Gillard et al. 2010), have been deployed over the past few years to effectively place proppant in fractures. The goal of these methods is to increase the conductivity in the proppant pack, providing highly conductive paths for hydrocarbons to flow from the reservoir to the wellbore. This paper presents an experimental study on proppant placement by use of a new method of fracturing, referred to as alternate-slug fracturing. The method involves an alternate injection of low-viscosity and high-viscosity fluids, with proppant carried by the low-viscosity fluid. Alternate-slug fracturing ensures a deeper placement of proppant through two primary mechanisms: (i) proppant transport in viscous fingers, formed by the low-viscosity fluid, and (ii) an increase in drag force in the polymer slug, leading to better entrainment and displacement of any proppant banks that may have formed. Both these effects lead to longer propped-fracture length and better vertical placement of proppant in the fracture. In addition, the method offers lower polymer costs, lower pumping horsepower, smaller fracture widths, better control of fluid leakoff, less risk of tip screenouts, and less gel damage compared with conventional gel fracture treatments. Experiments are conducted in simulated fractures (slot cells) with fluids of different viscosity, with proppant being carried by the low-viscosity fluid. It is shown that viscous fingers of low-viscosity fluid and viscous sweeps by the high-viscosity fluid lead to a deeper placement of proppant. Experiments are also conducted to demonstrate slickwater fracturing, hybrid fracturing, and reverse-hybrid fracturing. Comparison shows that alternate-slug fracturing leads to the deepest and most-uniform placement of proppant inside the fracture. Experiments are also conducted to study the mixing of fluids over a wide range of viscosity ratios. Data are presented to show that the finger velocities and mixing-zone velocities increase with viscosity ratio up to viscosity ratios of approximately 350. However, at higher viscosity ratios, the velocities plateau, signifying no further effect of viscosity contrast on the growth of fingers and mixing zone. The data are an integral part of design calculations for alternate-slug-fracturing treatments.


2020 ◽  
Author(s):  
Jingshe Song ◽  
Reinaldo Navarrete ◽  
Mahmoud Asadi ◽  
Bryan Jin

2020 ◽  
Author(s):  
Dmitriy Abdrazakov ◽  
Yeltay Juldugulov ◽  
Ruslan Kruglov ◽  
Svetlana Pavlova ◽  
Sergei Vereschagin ◽  
...  

2020 ◽  
Author(s):  
Dmitriy Abdrazakov ◽  
Yeltay Juldugulov ◽  
Ruslan Kruglov ◽  
Svetlana Pavlova ◽  
Sergei Vereschagin ◽  
...  

2021 ◽  
Vol 11 (4) ◽  
pp. 1865-1871
Author(s):  
Weiwei He ◽  
Zhiqiang Liu

AbstractUnderstanding the formation damage surrounding the well during the drilling operation is the key to predict damage degree and protect the formation in oil/gas reserviors. Based on the core drainage results, we obtained an empirical relationship between the invasion volume of drilling fluid and permeability reduction of formation. Furthermore, the equation is incorporated into a commercial reservior numerical simulation simulator to characterize the behaviors of drilling fluid invasion process. The results show that, although the invasion depth in low permeability reservoirs is short with the range of 1.7–2.5 m, the effect on recovery factor is significant due to the narrow seepage area in the near fracture region. When considering the formation damage, the pressure in the near-fracture damage region drops sharply, leading to a three-stage shape in pressure distribution curve. In addition, we found that high viscosity and low density oil-based slurry and shorter soaking period are conducive to decrease the formation damage during drilling operation. This work reveals the fundamental mechanisms of formation damage in low permeability reservoirs, which is a theoretical basis in formulation drilling fluids and optimization operation parameters.


SPE Journal ◽  
2021 ◽  
pp. 1-17
Author(s):  
Ghith Biheri ◽  
Abdulmohsin Imqam

Summary The stimulation of unconventional reservoirs to improve oil productivity in tight formations of shale basins is a key objective in hydraulic fracturing treatments. Such stimulation can be made by reliable fracture fluids that have a high viscosity and elasticity to suspend the proppant in the fracture networks. Recently, due to several operational and economic reasons, the oil industry began using high-viscosity friction reducers (HVFRs) as direct replacements for linear and crosslinked gels. However, some issues can limit the capability of HVFRs to provide effective sand transport, including the high fluid temperature during fracture treatment inside the formations. This may lead to unstable fracture fluids caused by a decrease in the interconnective strength between the fluid chains, which results in reduced viscosity and elasticity. This study comprehensively investigated HVFRs in comparison with guar at various temperatures. An HVFR at 4 gallons per thousand gallons of water (gpt) and guar at 25 pounds per thousand gallons of water (ppt) were selected based on fluid rheology tests and hydraulic fracture execution field results. The rheological measurements of both fracture fluids were conducted at different temperature values (i.e., 25, 50, 75, and 100°C). Static and dynamic proppant settling tests were also conducted at the same temperatures. The results showed that the HVFR provided better proppant transport capability than the guar. The HVFR had better thermal stability than guar, but its viscosity and elasticity decreased significantly when the temperature exceeded 75°C. An HVFR can carry and hold the proppant more deeply inside the fracture than liner gel, but that ability decreases as the temperature increases. Therefore, using conditions that mimic field conditions to measure the fracture fluid rheology, proppant static settling velocity, and proppant dune development under a high temperature is crucial for enhancing the fracture treatment results.


2019 ◽  
Author(s):  
Mohammed Ba Geri ◽  
Abdulaziz Ellafi ◽  
Ralph Flori ◽  
Jerry Noles ◽  
Sangjoon Kim

2018 ◽  
Author(s):  
Y. Thomas Hu ◽  
David Fisher ◽  
Pious Kurian ◽  
Ron Calaway

Sign in / Sign up

Export Citation Format

Share Document