Proppant Transport Using High-Viscosity Friction Reducer Fracture Fluids at High-Temperature Environment

SPE Journal ◽  
2021 ◽  
pp. 1-17
Author(s):  
Ghith Biheri ◽  
Abdulmohsin Imqam

Summary The stimulation of unconventional reservoirs to improve oil productivity in tight formations of shale basins is a key objective in hydraulic fracturing treatments. Such stimulation can be made by reliable fracture fluids that have a high viscosity and elasticity to suspend the proppant in the fracture networks. Recently, due to several operational and economic reasons, the oil industry began using high-viscosity friction reducers (HVFRs) as direct replacements for linear and crosslinked gels. However, some issues can limit the capability of HVFRs to provide effective sand transport, including the high fluid temperature during fracture treatment inside the formations. This may lead to unstable fracture fluids caused by a decrease in the interconnective strength between the fluid chains, which results in reduced viscosity and elasticity. This study comprehensively investigated HVFRs in comparison with guar at various temperatures. An HVFR at 4 gallons per thousand gallons of water (gpt) and guar at 25 pounds per thousand gallons of water (ppt) were selected based on fluid rheology tests and hydraulic fracture execution field results. The rheological measurements of both fracture fluids were conducted at different temperature values (i.e., 25, 50, 75, and 100°C). Static and dynamic proppant settling tests were also conducted at the same temperatures. The results showed that the HVFR provided better proppant transport capability than the guar. The HVFR had better thermal stability than guar, but its viscosity and elasticity decreased significantly when the temperature exceeded 75°C. An HVFR can carry and hold the proppant more deeply inside the fracture than liner gel, but that ability decreases as the temperature increases. Therefore, using conditions that mimic field conditions to measure the fracture fluid rheology, proppant static settling velocity, and proppant dune development under a high temperature is crucial for enhancing the fracture treatment results.

Author(s):  
Chen Huilong ◽  
Zou Qiang ◽  
Fu Jie ◽  
Liu Jinfeng ◽  
Li Shulin

The purpose of this study is to study the thermal characteristics of mechanical seal under high temperature and high viscosity media, to provide a basis for the thermal deformation studies of the sealing ring and the effective control of flushing fluid. The mechanical seal ring (AR201 type) was taken as the research object, the combined effect of frictional heat, shear heat, flushing fluid was considered to establish of heat transfer calculation model. The finite element method was used to analysis temperature field with variable speed, different temperature and pressure of flushing fluid, the results show that the maximum temperature was nearby the center of the contact surface of the rotational ring and stational ring, which increases sharply with the speed increasing. The temperature gradient of stationary ring face ranges greater than that of the rotational ring. The average temperature of axial section decreases along the axis, which of stational ring reduces faster than the rotational ring. The temperature of end surface increases with the increasing temperature and pressure of flushing fluid. To ensure the flushing effect of the sealing ring and operation steadily, fluid temperature was preference between 14 ° C ∼ 18 ° C, pressure of 0.8MPa ∼ 0.9MPa.


2012 ◽  
Vol 490-495 ◽  
pp. 3114-3118
Author(s):  
Xiao Ling Jiang ◽  
Zong Ming Lei ◽  
Kai Wei

With six-speed rotary viscometer measuring the rheology of drilling fluid at low temperature, during the high-speed process, the drilling fluid temperature is not constant at low temperature, which leads to the inaccuracy in rheological measurement. When R/S rheometer is used cooperating with constant low-temperature box , the temperature remains stable during the process of determining the drilling fluid rheology under low temperature. The R/S rheometer and the six-speed rotational viscometer are both coaxial rotational viscometers, but they work in different ways and the two cylindrical clearance between them are different.How to make two viscometer determination result can maintain consistent?The experimental results show that, The use of R/S rheometer, with the shear rate for 900s-1 shear stress values instead of six speed rotary viscometer shear rate for 1022s-1 shear stress values.Then use two-point formula to calculate rheological parameters.The R/S rheometer rheological parameter variation with temperature has a good linear relationship,Can better reflect the rheological properties of drilling fluids with low temperature changerule


2021 ◽  
pp. 52-62
Author(s):  
V. P. Ovchinnikov ◽  
O. V. Rozhkova ◽  
S. N. Bastrikov ◽  
D. S. Leontiev ◽  
P. V. Ovchinnikov

The article discusses the main technological processes of well construction for the production of high-viscosity hydrocarbons from productive lowporosity reservoirs with high temperature and pressure conditions, which include shale deposits of Bazhenov formation. According to the results of the review and analysis of existing solutions in the development of this deposits, the following measures were justified and proposed: construction of branched multi-hole azimuth horizontal wells, implementation of selective multi-stage hydraulic fracturing in the productive formation; the use of oil-based process fluids when opening the reservoir, the use of plugging materials for isolation of the reservoir, the hardening product of which is represented by thermally stable hydrate phases (hydrobasic hydrosilicates). Вranched wells have a long horizontal end (about 1 000 meters or more). Only a part of the horizontal section works effectively, which is the basis for the development and application of the staged, both in time and along the strike, hydraulic fracturing method. At the level of the invention, a method and apparatus for carrying out multistage selective hydraulic fracturing in wells with horizontal completion have been developed. The article describes a method for implementing multistage selective hydraulic fracturing, comparing this method with the existing ones. Much attention is given to the need to use hydrocarbon-based solutions for the initial opening the reservoir, to use cement slurries from composite materials to separate the reservoir, the hardening product of which is a stone formed by low-basic calcium hydrosilicate.


2021 ◽  
Author(s):  
Ahmed Mostafa Samak ◽  
Abdelalim Hashem Elsayed

Abstract During drilling oil, gas, or geothermal wells, the temperature difference between the formation and the drilling fluid will cause a temperature change around the borehole, which will influence the wellbore stresses. This effect on the stresses tends to cause wellbore instability in high temperature formations, which may lead to some problems such as formation break down, loss of circulation, and untrue kick. In this research, a numerical model is presented to simulate downhole temperature changes during circulation then simulate its effect on fracture pressure gradient based on thermo-poro-elasticity theory. This paper also describes an incident occurred during drilling a well in Gulf of Suez and the observations made during this incident. It also gives an analysis of these observations which led to a reasonable explanation of the cause of this incident. This paper shows that the fracture pressure decreases as the temperature of wellbore decreases, and vice versa. The research results could help in determining the suitable drilling fluid density in high-temperature wells. It also could help in understanding loss and gain phenomena in HT wells which may happen due to thermal effect. The thermal effect should be taken into consideration while preparing wellbore stability studies and choosing mud weight of deep wells, HPHT wells, deep water wells, or wells with depleted zones at high depths because cooling effect reduces the wellbore stresses and effective FG. Understanding and controlling cooling effect could help in controlling the reduction in effective FG and so avoid lost circulation and additional unnecessary casing points.


Author(s):  
M. Ijaz Khan ◽  
F. Alzahrani

This paper analyzes the influence of mixed convective fourth grade nanofluid flow by a stretchable Riga device in the presence variable thermal conductivity and mass diffusivity. Heat and mass transportation are considered with Cattaneo–Christov (CC) model. Thermal radiation and dissipation are also taken in the energy expression. Suitable transformation is employed to reduce partial differential system into nonlinear ordinary system. The governing nonlinear expression is solved via optimal homotopy analysis method. Impact of different physical variables is discussed via graphs. Velocity profile is enhanced for higher values of cross viscous parameter and fourth grade fluid variable. Fluid temperature enhances for higher estimation of thermal relaxation parameter but reverse behavior is seen for solutal concentration variable on nanoparticle concentration.


2018 ◽  
Vol 63 (5) ◽  
pp. 1846-1846
Author(s):  
William A. Wakeham ◽  
Marc J. Assael ◽  
Helena M. N. T. Avelino ◽  
Scott Bair ◽  
Hseen O. Baled ◽  
...  

SPE Journal ◽  
2020 ◽  
pp. 1-19
Author(s):  
Jung Yong Kim ◽  
Lijun Zhou ◽  
Nobuo Morita

Summary Hydraulic fracturing with slickwater is a common practice in developing unconventional resources in North America. The proppant placement in the fractures largely determines the productivity of the well because it affects the conductivity of fractures. Despite the wide use of slickwater fracturing and the importance of proppant placement, the proppant transport is still not fully understood, and the efficiency of the proppant placement is mostly bound to the changes to proppant properties, friction reducers, and guar technology. Although the degradable fiber is currently used in some cases, it has not been well investigated. In this experimental study, we conducted a proppant transport experiment using different fluid compositions of fiber and guar gum in three types of proppant transport slot equipment. After the experiments, simulation was conducted with the commercial fracture software StimPlanTM (NSI Technologies 2020) to simulate and compare the fracture fluid performance with and without the fibers. The results indicate that using degradable fibers with or without the guar gum as a viscosifier can produce a fracture slurry applicable in both conventional and unconventional fracturing operations, helping proppant placement in the reservoir.


2012 ◽  
Vol 5 ◽  
pp. 352-357 ◽  
Author(s):  
Ming Hao Hou ◽  
Yi Qiu Tan ◽  
Bin Hu

This paper introduces dynamic water effect into the test, develops a laboratory test device for simulating the dynamic water effect on asphalt pavement, and puts forward a test method of dynamic water effect working together with load, water and temperature. Based on this method, the high temperature stability of seven kinds of asphalt mixtures with the factors of asphalt grade, gradation and air voids are studied. The research shows that the effect of dynamic water can take adverse effect for the high temperature stability of asphalt mixture. The effect degree is different under different factors. It is the most disadvantaged when the air voids of the mixture is near 10%, the skeleton structure gradation of mixture is better than the suspended structure at the most disadvantage air voids, and the mixture made of high viscosity asphalt is more affected when the temperature is higher.


Sign in / Sign up

Export Citation Format

Share Document