Short-Term Production Forecasting to Evaluate Production Target Deliverability Using End to End Integration Platform from Reservoir to Surface Network

2020 ◽  
Author(s):  
Ayesha Ahmed Abdulla Salem Alsaeedi ◽  
Fahed Ahmed AlHarethi ◽  
Eduard Latypov ◽  
Muhammad Ali Arianto ◽  
Nagaraju Reddicharla ◽  
...  
2021 ◽  
pp. 1-17
Author(s):  
Enda Du ◽  
Yuetian Liu ◽  
Ziyan Cheng ◽  
Liang Xue ◽  
Jing Ma ◽  
...  

Summary Accurate production forecasting is an essential task and accompanies the entire process of reservoir development. With the limitation of prediction principles and processes, the traditional approaches are difficult to make rapid predictions. With the development of artificial intelligence, the data-driven model provides an alternative approach for production forecasting. To fully take the impact of interwell interference on production into account, this paper proposes a deep learning-based hybrid model (GCN-LSTM), where graph convolutional network (GCN) is used to capture complicated spatial patterns between each well, and long short-term memory (LSTM) neural network is adopted to extract intricate temporal correlations from historical production data. To implement the proposed model more efficiently, two data preprocessing procedures are performed: Outliers in the data set are removed by using a box plot visualization, and measurement noise is reduced by a wavelet transform. The robustness and applicability of the proposed model are evaluated in two scenarios of different data types with the root mean square error (RMSE), the mean absolute error (MAE), and the mean absolute percentage error (MAPE). The results show that the proposed model can effectively capture spatial and temporal correlations to make a rapid and accurate oil production forecast.


2021 ◽  
Author(s):  
Ronan Fablet ◽  
Bertrand Chapron ◽  
Lucas Drumetz ◽  
Etienne Memin ◽  
Olivier Pannekoucke ◽  
...  

<p>This paper addresses representation learning for the resolution of inverse problems  with geophysical dynamics. Among others, examples of inverse problems of interest include space-time interpolation, short-term forecasting, conditional simulation w.r.t. available observations, downscaling problems… From a methodological point of view, we rely on a variational data assimilation framework. Data assimilation (DA) aims to reconstruct the time evolution of some state given a series of  observations, possibly noisy and irregularly-sampled. Here, we investigate DA from a machine learning point of view backed by an underlying variational representation.  Using automatic differentiation tools embedded in deep learning frameworks, we introduce end-to-end neural network architectures for variational data assimilation. It comprises two key components: a variational model and a gradient-based solver both implemented as neural networks. A key feature of the proposed end-to-end learning architecture is that we may train the neural networks models using both supervised and unsupervised strategies. We first illustrate applications to the reconstruction of Lorenz-63 and Lorenz-96 systems from partial and noisy observations. Whereas the gain issued from the supervised learning setting emphasizes the relevance of groundtruthed observation dataset for real-world case-studies, these results also suggest new means to design data assimilation models from data. Especially, they suggest that learning task-oriented representations of the underlying dynamics may be beneficial. We further discuss applications to short-term forecasting and sampling design along with preliminary results for the reconstruction of sea surface currents from satellite altimetry data. </p><p>This abstract is supported by a preprint available online: https://arxiv.org/abs/2007.12941</p>


2017 ◽  
Vol 14 (1) ◽  
pp. 8
Author(s):  
KartikChandra Mandal ◽  
Rajarshi Kumar ◽  
Pankaj Halder ◽  
Shibsankar Barman ◽  
Madhumita Mukhopadhyay ◽  
...  

2019 ◽  
Vol 27 (1) ◽  
pp. 39-46 ◽  
Author(s):  
Fenia Christopoulou ◽  
Thy Thy Tran ◽  
Sunil Kumar Sahu ◽  
Makoto Miwa ◽  
Sophia Ananiadou

AbstractObjectiveIdentification of drugs, associated medication entities, and interactions among them are crucial to prevent unwanted effects of drug therapy, known as adverse drug events. This article describes our participation to the n2c2 shared-task in extracting relations between medication-related entities in electronic health records.Materials and MethodsWe proposed an ensemble approach for relation extraction and classification between drugs and medication-related entities. We incorporated state-of-the-art named-entity recognition (NER) models based on bidirectional long short-term memory (BiLSTM) networks and conditional random fields (CRF) for end-to-end extraction. We additionally developed separate models for intra- and inter-sentence relation extraction and combined them using an ensemble method. The intra-sentence models rely on bidirectional long short-term memory networks and attention mechanisms and are able to capture dependencies between multiple related pairs in the same sentence. For the inter-sentence relations, we adopted a neural architecture that utilizes the Transformer network to improve performance in longer sequences.ResultsOur team ranked third with a micro-averaged F1 score of 94.72% and 87.65% for relation and end-to-end relation extraction, respectively (Tracks 2 and 3). Our ensemble effectively takes advantages from our proposed models. Analysis of the reported results indicated that our proposed approach is more generalizable than the top-performing system, which employs additional training data- and corpus-driven processing techniques.ConclusionsWe proposed a relation extraction system to identify relations between drugs and medication-related entities. The proposed approach is independent of external syntactic tools. Analysis showed that by using latent Drug-Drug interactions we were able to significantly improve the performance of non–Drug-Drug pairs in EHRs.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2045
Author(s):  
Xijie Xu ◽  
Xiaoping Rui ◽  
Yonglei Fan ◽  
Tian Yu ◽  
Yiwen Ju

Owing to the importance of coalbed methane (CBM) as a source of energy, it is necessary to predict its future production. However, the production process of CBM is the result of the interaction of many factors, making it difficult to perform accurate simulations through mathematical models. We must therefore rely on the historical data of CBM production to understand its inherent features and predict its future performance. The objective of this paper is to establish a deep learning prediction method for coalbed methane production without considering complex geological factors. In this paper, we propose a multivariate long short-term memory neural network (M-LSTM NN) model to predict CBM production. We tested the performance of this model using the production data of CBM wells in the Panhe Demonstration Area in the Qinshui Basin of China. The production of different CBM wells has similar characteristics in time. We can use the symmetric similarity of the data to transfer the model to the production forecasting of different CBM wells. Our results demonstrate that the M-LSTM NN model, utilizing the historical yield data of CBM as well as other auxiliary information such as casing pressures, water production levels, and bottom hole temperatures (including the highest and lowest temperatures), can predict CBM production successfully while obtaining a mean absolute percentage error (MAPE) of 0.91%. This is an improvement when compared with the traditional LSTM NN model, which has an MAPE of 1.14%. In addition to this, we conducted multi-step predictions at a daily and monthly scale and obtained similar results. It should be noted that with an increase in time lag, the prediction performance became less accurate. At the daily level, the MAPE value increased from 0.24% to 2.09% over 10 successive days. The predictions on the monthly scale also saw an increase in the MAPE value from 2.68% to 5.95% over three months. This tendency suggests that long-term forecasts are more difficult than short-term ones, and more historical data are required to produce more accurate results.


Sign in / Sign up

Export Citation Format

Share Document