Production Forecasting with the Interwell Interference by Integrating Graph Convolutional and Long Short-Term Memory Neural Network

2021 ◽  
pp. 1-17
Author(s):  
Enda Du ◽  
Yuetian Liu ◽  
Ziyan Cheng ◽  
Liang Xue ◽  
Jing Ma ◽  
...  

Summary Accurate production forecasting is an essential task and accompanies the entire process of reservoir development. With the limitation of prediction principles and processes, the traditional approaches are difficult to make rapid predictions. With the development of artificial intelligence, the data-driven model provides an alternative approach for production forecasting. To fully take the impact of interwell interference on production into account, this paper proposes a deep learning-based hybrid model (GCN-LSTM), where graph convolutional network (GCN) is used to capture complicated spatial patterns between each well, and long short-term memory (LSTM) neural network is adopted to extract intricate temporal correlations from historical production data. To implement the proposed model more efficiently, two data preprocessing procedures are performed: Outliers in the data set are removed by using a box plot visualization, and measurement noise is reduced by a wavelet transform. The robustness and applicability of the proposed model are evaluated in two scenarios of different data types with the root mean square error (RMSE), the mean absolute error (MAE), and the mean absolute percentage error (MAPE). The results show that the proposed model can effectively capture spatial and temporal correlations to make a rapid and accurate oil production forecast.

Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2045
Author(s):  
Xijie Xu ◽  
Xiaoping Rui ◽  
Yonglei Fan ◽  
Tian Yu ◽  
Yiwen Ju

Owing to the importance of coalbed methane (CBM) as a source of energy, it is necessary to predict its future production. However, the production process of CBM is the result of the interaction of many factors, making it difficult to perform accurate simulations through mathematical models. We must therefore rely on the historical data of CBM production to understand its inherent features and predict its future performance. The objective of this paper is to establish a deep learning prediction method for coalbed methane production without considering complex geological factors. In this paper, we propose a multivariate long short-term memory neural network (M-LSTM NN) model to predict CBM production. We tested the performance of this model using the production data of CBM wells in the Panhe Demonstration Area in the Qinshui Basin of China. The production of different CBM wells has similar characteristics in time. We can use the symmetric similarity of the data to transfer the model to the production forecasting of different CBM wells. Our results demonstrate that the M-LSTM NN model, utilizing the historical yield data of CBM as well as other auxiliary information such as casing pressures, water production levels, and bottom hole temperatures (including the highest and lowest temperatures), can predict CBM production successfully while obtaining a mean absolute percentage error (MAPE) of 0.91%. This is an improvement when compared with the traditional LSTM NN model, which has an MAPE of 1.14%. In addition to this, we conducted multi-step predictions at a daily and monthly scale and obtained similar results. It should be noted that with an increase in time lag, the prediction performance became less accurate. At the daily level, the MAPE value increased from 0.24% to 2.09% over 10 successive days. The predictions on the monthly scale also saw an increase in the MAPE value from 2.68% to 5.95% over three months. This tendency suggests that long-term forecasts are more difficult than short-term ones, and more historical data are required to produce more accurate results.


Author(s):  
Finn Stevenson ◽  
Kentaro Hayasi ◽  
Nicola Luigi Bragazzi ◽  
Jude Dzevela Kong ◽  
Ali Asgary ◽  
...  

The impact of the still ongoing “Coronavirus Disease 2019” (COVID-19) pandemic has been and is still vast, affecting not only global human health and stretching healthcare facilities, but also profoundly disrupting societal and economic systems worldwide. The nature of the way the virus spreads causes cases to come in further recurring waves. This is due a complex array of biological, societal and environmental factors, including the novel nature of the emerging pathogen. Other parameters explaining the epidemic trend consisting of recurring waves are logistic–organizational challenges in the implementation of the vaccine roll-out, scarcity of doses and human resources, seasonality, meteorological drivers, and community heterogeneity, as well as cycles of strengthening and easing/lifting of the mitigation interventions. Therefore, it is crucial to be able to have an early alert system to identify when another wave of cases is about to occur. The availability of a variety of newly developed indicators allows for the exploration of multi-feature prediction models for case data. Ten indicators were selected as features for our prediction model. The model chosen is a Recurrent Neural Network with Long Short-Term Memory. This paper documents the development of an early alert/detection system that functions by predicting future daily confirmed cases based on a series of features that include mobility and stringency indices, and epidemiological parameters. The model is trained on the intermittent period in between the first and the second wave, in all of the South African provinces.


Batteries ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 66
Author(s):  
Tadele Mamo ◽  
Fu-Kwun Wang

Monitoring cycle life can provide a prediction of the remaining battery life. To improve the prediction accuracy of lithium-ion battery capacity degradation, we propose a hybrid long short-term memory recurrent neural network model with an attention mechanism. The hyper-parameters of the proposed model are also optimized by a differential evolution algorithm. Using public battery datasets, the proposed model is compared to some published models, and it gives better prediction performance in terms of mean absolute percentage error and root mean square error. In addition, the proposed model can achieve higher prediction accuracy of battery end of life.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3493 ◽  
Author(s):  
Chujie Tian ◽  
Jian Ma ◽  
Chunhong Zhang ◽  
Panpan Zhan

Accurate electrical load forecasting is of great significance to help power companies in better scheduling and efficient management. Since high levels of uncertainties exist in the load time series, it is a challenging task to make accurate short-term load forecast (STLF). In recent years, deep learning approaches provide better performance to predict electrical load in real world cases. The convolutional neural network (CNN) can extract the local trend and capture the same pattern, and the long short-term memory (LSTM) is proposed to learn the relationship in time steps. In this paper, a new deep neural network framework that integrates the hidden feature of the CNN model and the LSTM model is proposed to improve the forecasting accuracy. The proposed model was tested in a real-world case, and detailed experiments were conducted to validate its practicality and stability. The forecasting performance of the proposed model was compared with the LSTM model and the CNN model. The Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) were used as the evaluation indexes. The experimental results demonstrate that the proposed model can achieve better and stable performance in STLF.


2021 ◽  
Vol 13 (7) ◽  
pp. 1284
Author(s):  
Weilin Wang ◽  
Wenjing Mao ◽  
Xueli Tong ◽  
Gang Xu

Deep learning provides a promising approach for air pollution prediction. The existing deep learning-based predicted models generally consider either the temporal correlations of air quality monitoring stations or the nonlinear relationship between the PM2.5 (particulate matter with an aerodynamic diameter of less than 2.5 μm) concentrations and explanatory variables. Spatial correlation has not been effectively incorporated into prediction models, therefore exhibiting poor performance in PM2.5 prediction tasks. Additionally, determining the manner by which to expand longer-term prediction tasks is still challenging. In this paper, to allow for spatiotemporal correlations, a spatiotemporal convolutional recursive long short-term memory (CR-LSTM) neural network model is proposed for predicting the PM2.5 concentrations in long-term prediction tasks by combining a convolutional long short-term memory (ConvLSTM) neural network and a recursive strategy. Herein, the ConvLSTM network was used to capture the complex spatiotemporal correlations and to predict the future PM2.5 concentrations; the recursive strategy was used for expanding the long-term prediction tasks. The CR-LSTM model was used to realize the prediction of the future 24 h of PM2.5 concentrations for 12 air quality monitoring stations in Beijing by configuring both the appropriate time lag derived from the temporal correlations and the spatial neighborhood, including the hourly historical PM2.5 concentrations, the daily mean meteorological data, and the annual nighttime light and normalized difference vegetation index (NDVI). The results showed that the proposed CR-LSTM model achieved better performance (coefficient of determination (R2) = 0.74; root mean square error (RMSE) = 18.96 μg/m3) than other common models, such as multiple linear regression (MLR), support vector regression (SVR), the conventional LSTM model, the LSTM extended (LSTME) model, and the temporal sliding LSTM extended (TS-LSTME) model. The proposed CR-LSTM model, implementing a combination of geographical rules, recursive strategy, and deep learning, shows improved performance in longer-term prediction tasks.


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 718 ◽  
Author(s):  
Park ◽  
Kim ◽  
Lee ◽  
Kim ◽  
Song ◽  
...  

In this paper, we propose a new temperature prediction model based on deep learning by using real observed weather data. To this end, a huge amount of model training data is needed, but these data should not be defective. However, there is a limitation in collecting weather data since it is not possible to measure data that have been missed. Thus, the collected data are apt to be incomplete, with random or extended gaps. Therefore, the proposed temperature prediction model is used to refine missing data in order to restore missed weather data. In addition, since temperature is seasonal, the proposed model utilizes a long short-term memory (LSTM) neural network, which is a kind of recurrent neural network known to be suitable for time-series data modeling. Furthermore, different configurations of LSTMs are investigated so that the proposed LSTM-based model can reflect the time-series traits of the temperature data. In particular, when a part of the data is detected as missing, it is restored by using the proposed model’s refinement function. After all the missing data are refined, the LSTM-based model is retrained using the refined data. Finally, the proposed LSTM-based temperature prediction model can predict the temperature through three time steps: 6, 12, and 24 h. Furthermore, the model is extended to predict 7 and 14 day future temperatures. The performance of the proposed model is measured by its root-mean-squared error (RMSE) and compared with the RMSEs of a feedforward deep neural network, a conventional LSTM neural network without any refinement function, and a mathematical model currently used by the meteorological office in Korea. Consequently, it is shown that the proposed LSTM-based model employing LSTM-refinement achieves the lowest RMSEs for 6, 12, and 24 h temperature prediction as well as for 7 and 14 day temperature prediction, compared to other DNN-based and LSTM-based models with either no refinement or linear interpolation. Moreover, the prediction accuracy of the proposed model is higher than that of the Unified Model (UM) Local Data Assimilation and Prediction System (LDAPS) for 24 h temperature predictions.


2021 ◽  
Vol 11 (4) ◽  
pp. 41-60
Author(s):  
Sangeetha Rajesh ◽  
Nalini N. J.

The proposed work investigates the impact of Mel Frequency Cepstral Coefficients (MFCC), Chroma DCT Reduced Pitch (CRP), and Chroma Energy Normalized Statistics (CENS) for instrument recognition from monophonic instrumental music clips using deep learning techniques, Bidirectional Recurrent Neural Networks with Long Short-Term Memory (BRNN-LSTM), stacked autoencoders (SAE), and Convolutional Neural Network - Long Short-Term Memory (CNN-LSTM). Initially, MFCC, CENS, and CRP features are extracted from instrumental music clips collected as a dataset from various online libraries. In this work, the deep neural network models have been fabricated by training with extracted features. Recognition rates of 94.9%, 96.8%, and 88.6% are achieved using combined MFCC and CENS features, and 90.9%, 92.2%, and 87.5% are achieved using combined MFCC and CRP features with deep learning models BRNN-LSTM, CNN-LSTM, and SAE, respectively. The experimental results evidence that MFCC features combined with CENS and CRP features at score level revamp the efficacy of the proposed system.


Author(s):  
Richa Sharma ◽  
Sudha Morwal ◽  
Basant Agarwal

This article presents a neural network-based approach to develop named entity recognition for Hindi text. In this paper, the authors propose a deep learning architecture based on convolutional neural network (CNN) and bi-directional long short-term memory (Bi-LSTM) neural network. Skip-gram approach of word2vec model is used in the proposed model to generate word vectors. In this research work, several deep learning models have been developed and evaluated as baseline systems such as recurrent neural network (RNN), long short-term memory (LSTM), Bi-LSTM. Furthermore, these baseline systems are promoted to a proposed model with the integration of CNN and conditional random field (CRF) layers. After a comparative analysis of results, it is verified that the performance of the proposed model (i.e., Bi-LSTM-CNN-CRF) is impressive. The proposed system achieves 61% precision, 56% recall, and 58% F-measure.


2020 ◽  
Vol 13 (1) ◽  
pp. 104
Author(s):  
Dana-Mihaela Petroșanu ◽  
Alexandru Pîrjan

The accurate forecasting of the hourly month-ahead electricity consumption represents a very important aspect for non-household electricity consumers and system operators, and at the same time represents a key factor in what regards energy efficiency and achieving sustainable economic, business, and management operations. In this context, we have devised, developed, and validated within the paper an hourly month ahead electricity consumption forecasting method. This method is based on a bidirectional long-short-term memory (BiLSTM) artificial neural network (ANN) enhanced with a multiple simultaneously decreasing delays approach coupled with function fitting neural networks (FITNETs). The developed method targets the hourly month-ahead total electricity consumption at the level of a commercial center-type consumer and for the hourly month ahead consumption of its refrigerator storage room. The developed approach offers excellent forecasting results, highlighted by the validation stage’s results along with the registered performance metrics, namely 0.0495 for the root mean square error (RMSE) performance metric for the total hourly month-ahead electricity consumption and 0.0284 for the refrigerator storage room. We aimed for and managed to attain an hourly month-ahead consumed electricity prediction without experiencing a significant drop in the forecasting accuracy that usually tends to occur after the first two weeks, therefore achieving a reliable method that satisfies the contractor’s needs, being able to enhance his/her activity from the economic, business, and management perspectives. Even if the devised, developed, and validated forecasting solution for the hourly consumption targets a commercial center-type consumer, based on its accuracy, this solution can also represent a useful tool for other non-household electricity consumers due to its generalization capability.


Sign in / Sign up

Export Citation Format

Share Document