Identifying Formation Creep: Ultrasonic Bond Logging Field Examples

2021 ◽  
pp. 1-15
Author(s):  
Amit Govil ◽  
Harald Nevøy ◽  
Lars Hovda ◽  
Guillermo A. Obando Palacio ◽  
Geir Kjeldaas

Summary As part of plug and abandonment (P&A) operations, several acceptance criteria need to be considered by operators to qualify barrier elements. In casing annuli, highly bonded material is occasionally found far above the theoretical top of cement. This paper aims to describe how the highly bonded material can be identified using a combination of ultrasonic logging data, validated with measurements in laboratory experiments using reference cells and how this, in combination with data from the well construction records, can contribute to lowering the costly toll of P&A operations. Ultrasonic and sonic log data were acquired in several wells to assess the bond quality behind multiple casing sizes in an abandonment campaign. Data obtained from pulse-echo and flexural sensors were interactively analyzed with a crossplotting technique to distinguish gas, liquid, barite, cement, and formation in the annular space. Within the methodology used, historical data on each well were considered as an integral part of the analysis. During the original well construction, either water-based mud (WBM) or synthetic oil-based mud (OBM) was used for drilling and cementing operations, and some formation intervals consistently showed high bonding signatures under specific conditions, giving clear evidence of formation creep. Log data from multiple wells confirm that formation behavior is influenced by the type of mud used during well construction. The log data provided information of annulus material with a detailed map of the axial and azimuthal variations of the annulus contents. In some cases, log response showed a clear indication of formation creep, evidenced by a high bond quality around the production casing where cement cannot be present. Based on observations from multiple fields in the Norwegian continental shelf, a crossplot workflow has been designed to distinguish formation from cement as the potential barrier element. NORSOK Standard D-010 (2013) has initial verification acceptance criteria both for annulus cement and creeping formation as a well barrier element, both involving bond logs; however, in the case of creeping formation, it is more stringent stating that “two independent logging measurements/tools shall be applied.” This paper aims to demonstrate how this can be done with confidence using ultrasonic and sonic log data, validated against reference barrier cells (Govil et al. 2020). Logging responses like those gathered during full-scale experiments of reference barrier cells with known defects were observed in multiple wells in the field. Understanding the phenomenon of formation creep and its associated casing bond signature could have a massive impact on P&A operations. With a successful qualification of formation as an annulus barrier, significant cost and time savings can be achieved.

2021 ◽  
Author(s):  
Amit Govil ◽  
Harald Nevoy ◽  
Lars Hovda ◽  
Guillermo A. Obando Palacio ◽  
Geir Kjeldaas

Abstract As part of plug and abandonment (P&A) operations, several acceptance criteria need to be considered by operators to qualify barrier elements. In casing annuli, highly bonded material is occasionally found far above the theoretical top of cement. This paper aims to describe how the highly bonded material can be identified using a combination of ultrasonic logging data, validated with measurements in lab experiments using reference cells and how this, in combination with data from the well construction records. can contribute to lowering the costly toll of P&A operations. Ultrasonic and sonic log data was acquired in several wells to assess the bond quality behind multiple casing sizes in an abandonment campaign. Data obtained from pulse-echo and flexural sensors was interactively analyzed with a cross-plotting technique to distinguish gas, liquid, barite, cement, and formation in the annular space. Within the methodology used, historical data on each well was considered as an integral part of the analysis. During the original well construction, either water-based or synthetic oil-based mud was used for drilling and cementing operations, and some formation intervals consistently showed high bonding signature under specific conditions, giving clear evidence of formation creep. Log data from multiple wells confirms formation behavior is influenced by the type of mud used during well construction. The log data provided information of annulus material with a detailed map of the axial and azimuthal variations of the annulus contents. In some cases, log response showed a clear indication of formation creep, evidenced by a high bond quality around the production casing where cement cannot be present. Based on observations from multiple fields in the Norwegian continental shelf, a crossplot workflow has been designed to distinguish formation from cement as the potential barrier element. NORSOK D-010 has initial verification acceptance criteria both for annulus cement and creeping formation as a well barrier element, both involving bond logs; however, in the case of creeping formation it is more stringent stating that "two independent logging measurements/tools shall be applied." This paper aims to demonstrate how this can be done with confidence utilizing ultrasonic and sonic log data, validated against reference barrier cells (SPE-199578). Logging responses like those gathered during full-scale experiment of reference barrier cells with known defects were observed in multiple wells in the field. Understanding the phenomenon of formation creep and its associated casing bond signature could have a massive impact on P&A operations. With a successful qualification of formation as an annulus barrier, significant cost and time savings can be achieved.


2021 ◽  
Author(s):  
Subhadeep Sarkar ◽  
Mathias Horstmann ◽  
Tore Oian ◽  
Piotr Byrski ◽  
George Lawrence ◽  
...  

Abstract One of the crucial components of well integrity evaluation in offshore drilling is to determine the cement bond quality assuring proper hydraulic sealing. On the Norwegian Continental Shelf (NCS) an industry standard as informative reference imposes verification of cement length and potential barriers using bonding logs. Traditionally, for the last 50 years, wireline (WL) sonic tools have been extensively used for this purpose. However, the applicability of logging-while-drilling (LWD) sonic tools for quantitative cement evaluation was explored in the recent development drilling campaign on the Dvalin Field in the Norwegian Sea, owing to significant advantages on operational efficiency and tool conveyance in any well trajectory. Cement bond evaluation from conventional peak-to-peak amplitude method has shown robust results up to bond indexes of 0.6 for LWD sonic tools. Above this limit, the casing signal is smaller than the collar signal and the amplitude method loses sensitivity to bonding. This practical challenge in the LWD realm was overcome through the inclusion of attenuation rate measurements, which responds accordingly in higher bonding environments. The two methods are used in a hybrid approach providing a full range quantitative bond index (QBI) introduced by Izuhara et al. (2017). In order to conform with local requirements related to well integrity and to ascertain the QBI potential from LWD monopole sonic, a wireline cement bond log (CBL) was acquired in the first well of the campaign for comparison. This enabled the strategic deployment of LWD QBI service in subsequent wells. LWD sonic monopole data was acquired at a controlled speed of 900ft/h. The high-fidelity waveforms were analyzed in a suitable time window and both amplitude- and attenuation-based bond indexes were derived. The combined hybrid bond index showed an excellent match with the wireline reference CBL, both in zones of high as well as lower cement bonding. The presence of formation arrivals was also in good correlation with zones of proper bonding distinguishable on the QBI results. This established the robustness of the LWD cement logging and ensured its applicability in the rest of the campaign which was carried out successfully. While the results from LWD cement evaluation service are omnidirectional, it comes with a wide range of benefits related to rig cost or conveyance in tough borehole trajectories. Early evaluation of cement quality by LWD sonic tools helps to provide adequate time for taking remedial actions if necessary. The LWD sonic as part of the drilling BHA enables this acquisition and service in non-dedicated runs, with the possibility of multiple passes for observing time-lapse effects. Also, the large sizes of LWD tools relative to the wellbore ensures a lower signal attenuation in the annulus and more effective stabilization, thereby providing a reliable bond index.


Author(s):  
J. Wei ◽  
S. S. Deng ◽  
C. M. Tan

Silicon-to-silicon wafer bonding by sol-gel intermediate layer has been performed using acid-catalyzed tetraethylthosilicate-ethanol-water sol solution. High bond strength near to the fracture strength of bulk silicon is obtained at low temperature, for example 100°C. However, The bond efficiency and bond strength of this intermediate layer bonding sharply decrease when the bonding temperature increases to elevated temperature, such as 300 °C. The degradation of bond quality is found to be related to the decomposition of residual organic species at elevated bonding temperature. The bubble generation and the mechanism of the high bond strength at low temperature are exploited.


Author(s):  
Nicolás D. Barbosa ◽  
Andrew Greenwood ◽  
Eva Caspari ◽  
Nathan Dutler ◽  
Klaus Holliger
Keyword(s):  
Log Data ◽  

Author(s):  
Tomio Inazaki ◽  
Toshiyuki Kurahashi ◽  
Shiro Watanabe
Keyword(s):  
Log Data ◽  

2012 ◽  
Vol 64 (12) ◽  
pp. 130-132
Author(s):  
Dennis Denney
Keyword(s):  
Log Data ◽  

2021 ◽  
Author(s):  
Saeed Aftab ◽  
Rasoul Hamidzadeh Moghadam

Abstract Well logging is an essential approach to making geophysical surveys and petrophysical measurements and plays a key role to interpret downhole conditions. But, well logging signals usually contain noise that distorts results and causes ambiguous interpretations. In this paper, the wavelet filter and robust data smoothing algorithms are tested for denoising synthetic sonic log and field sonic log data. Robust data smoothing algorithms include Gaussian, RLOESS (Robust locally estimating scatterplot smoothing), and RLOWESS (Robust locally weighted scatterplot smoothing) methods. Uniform and normal distribution noise applied to synthetic model and results revealed that the wavelet filter performs better than data smoothing algorithms for denoising uniform distribution noise. However, the RLOESS removed uniform noise acceptably. But, for normal distribution noise, the wavelet filter disrupts and data smoothing algorithms, specifically RLOESS attenuated noise perfectly. Due to the noise nature of field sonic log data, wavelet filter completely disrupts, but data smoothing algorithms removed the noise of field data more efficiently, particularly RLOESS. So, we can express that RLOESS is a perfect algorithm for denoising sonic log signals, regardless of noise nature.


2019 ◽  
Vol 124 (3) ◽  
pp. 2738-2761 ◽  
Author(s):  
Nicolás D. Barbosa ◽  
Eva Caspari ◽  
J. Germán Rubino ◽  
Andrew Greenwood ◽  
Ludovic Baron ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document