Ensuring Success of Complex Liner Deployment Over Complete Field Development Campaign

2021 ◽  
Author(s):  
Loïc Brillaud ◽  
Florent Couliou ◽  
Kim Mathisen ◽  
Tom Rune Koløy ◽  
Chloé Lacaze ◽  
...  

Abstract This paper describes the innovative engineering workflow which has been used to ensure the safe deployment of deep production liners on long step-out wells of a deep offshore development field. It highlights the importance of accurate Torque & Drag modelling during planning and operations and provides details on how the use of downhole data assisted in understanding downhole conditions on the first wells, which allowed to optimize the running and setting procedure for the next wells of the field. For this methodology, a unique Torque & Drag stiff-string model was used to simulate the evolution of side-forces, tension, stretch, torque and twist along the string at every stage of the deployment and setting of the liner. Simulations were performed both during planning phase and operations. Once the well completed, downhole memory data from a logging tool was compared with simulations, which allowed to calibrate the model, better understand downhole conditions, and provide recommendations for the next runs. Using this methodology, the operator succeeded in deploying the liner to total depth, setting the hanger and packer successfully on all the wells of the field. These operations were performed with only 40 minutes of non-productive time throughout the campaign. The paper shows how correlating downhole data with Torque & Drag simulations highlighted areas of improvement and allowed to optimize the running and setting procedure of the liner. It also led the operator to gain confidence in the feasibility of such critical operations even on the more challenging wells. Detailed engineering and collaboration were key to this success. Such methodology can be applied on every well where weight transfer is a potential issue. As the industry is heading towards digitalization and automation, this case study is a prime example which demonstrates the added value of combining advanced physics-based simulations with time based downhole data.

Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 724
Author(s):  
Alicja K. Zawadzka

The paper presents the results of a study on the attractiveness to tourists and natives of the cultural qualities of coastal towns on The Pomeranian Way of St. James that are members of the Cittaslow network. Attention to the quality of urban life is inscribed in the development policies of towns applying to join the Cittaslow movement. In order to join the network (apart from the size criterion), towns need to meet a minimum of 50% plus one of the 72 criteria grouped into seven categories. One of the category is Quality of Urban Life Policy, so the towns applying to join Cittaslow commit themselves to actions aimed at improving the quality of urban life. The study on the attractiveness of cultural qualities of towns to tourists and natives was conducted using the author’s BRB method, whose added value is its universality and the possibility to study small towns regardless of their membership in the Cittaslow network. BRB is an acronym that stands for BUILDINGS, RELATIONSHIPS, BALANCE, and comprises three scopes of activities: BUILDINGS (iconic building and important sites where the inhabitants and the tourists are present); RELATIONSHIPS (the visual effects of the relations between the inhabitants and the town) and BALANCE (solutions that implement modern technologies). This method enables identification of places that are important to the inhabitants, where urban life takes place and which are often created with the involvement of the inhabitants. These are often the same spaces as those that attract tourists and perhaps stimulate them the desire to visit the town again (BRB—be right back). The aim of the BRB method is shown the attractiveness of small towns. The study has shown that the characteristic feature of Polish Cittaslow towns is their diversity: the architectural attractiveness of three towns is high both to tourists and natives. On the other hand, the urban attractiveness of the examined towns is an insufficient.


Author(s):  
Heinri W. Freiboth ◽  
Leila Goedhals-Gerber ◽  
F. Esbeth Van Dyk ◽  
Malcolm C. Dodd

There is concern in the South African fruit industry that a large amount of fruit and money is lost every season due to breaks in the fruit export cold chain. The possibility of a large percentage of losses in a significant sector of the economy warranted further investigation. This article attempted to highlight some of the possible problem areas in the cold chain, from the cold store to the port, by analysing historic temperature data from different fruit export supply chains of apples, pears and grapes. In addition, a trial shipment of apples was used to investigate temperature variation between different pallets in the same container. This research has added value to the South African fruit industry by identifying the need to improve operational procedures in the cold chain.


2011 ◽  
Author(s):  
Carey Mills ◽  
Andrew James Marron ◽  
Wolfgang J. Leeb
Keyword(s):  

2020 ◽  
Author(s):  
T. Barling ◽  
M. Paydayesh ◽  
C. Leone ◽  
C. Belguermi ◽  
M. Francis ◽  
...  

2021 ◽  
Author(s):  
Subba Ramarao Rachapudi Venkata ◽  
Nagaraju Reddicharla ◽  
Shamma Saeed Alshehhi ◽  
Indra Utama ◽  
Saber Mubarak Al Nuimi ◽  
...  

Abstract Matured hydrocarbon fields are continuously deteriorating and selection of well interventions turn into critical task with an objective of achieving higher business value. Time consuming simulation models and classical decision-making approach making it difficult to rapidly identify the best underperforming, potential rig and rig-less candidates. Therefore, the objective of this paper is to demonstrate the automated solution with data driven machine learning (ML) & AI assisted workflows to prioritize the intervention opportunities that can deliver higher sustainable oil rate and profitability. The solution consists of establishing a customized database using inputs from various sources including production & completion data, flat files and simulation models. Automation of Data gathering along with technical and economical calculations were implemented to overcome the repetitive and less added value tasks. Second layer of solution includes configuration of tailor-made workflows to conduct the analysis of well performance, logs, output from simulation models (static reservoir model, well models) along with historical events. Further these workflows were combination of current best practices of an integrated assessment of subsurface opportunities through analytical computations along with machine learning driven techniques for ranking the well intervention opportunities with consideration of complexity in implementation. The automated process outcome is a comprehensive list of future well intervention candidates like well conversion to gas lift, water shutoff, stimulation and nitrogen kick-off opportunities. The opportunity ranking is completed with AI assisted supported scoring system that takes input from technical, financial and implementation risk scores. In addition, intuitive dashboards are built and tailored with the involvement of management and engineering departments to track the opportunity maturation process. The advisory system has been implemented and tested in a giant mature field with over 300 wells. The solution identified more techno-economical feasible opportunities within hours instead of weeks or months with reduced risk of failure resulting into an improved economic success rate. The first set of opportunities under implementation and expected a gain of 2.5MM$ with in first one year and expected to have reoccurring gains in subsequent years. The ranked opportunities are incorporated into the business plan, RMP plans and drilling & workover schedule in accordance to field development targets. This advisory system helps in maximizing the profitability and minimizing CAPEX and OPEX. This further maximizes utilization of production optimization models by 30%. Currently the system was implemented in one of ADNOC Onshore field and expected to be scaled to other fields based on consistent value creation. A hybrid approach of physics and machine learning based solution led to the development of automated workflows to identify and rank the inactive strings, well conversion to gas lift candidates & underperforming candidates resulting into successful cost optimization and production gain.


2017 ◽  
Vol 6 (1) ◽  
pp. 48-63 ◽  
Author(s):  
Jeroen De Waegemaeker ◽  
Eva Kerselaers ◽  
Maarten Van Acker ◽  
Elke Rogge

Purpose As policy makers address the issue of climate adaptation, they are confronted with climate-specific barriers: a long-term horizon and a high degree of uncertainty. These barriers also hamper the development of spatial planning for climate adaptation. So how can spatial planners encompass these barriers and steer the general debate on climate adaptation? The paper aims to discuss these issues. Design/methodology/approach This research analyzes the strengths and weaknesses of an international design workshop on climate adaptation, and drought issues in particular. Design workshops are originally an educational setting but they are increasingly employed as a tool to explore alternative futures on a complex, real-life design problem. The case study illustrates how climate-specific barriers emerged throughout the design workshop and clarifies how they were encompassed by the participating design students. Findings The research clarifies the added value of a design workshop on climate adaptation. The paper highlights specific promising characteristics of the design workshop: the visualization of future adaptation challenges and the current water system, the focus on a regional project instead of sectoral adjustments and the integration of the adaptation challenge with other socio-economic goals. In the case study Flanders, however, the necessary participation of climate experts and policy makers of other domains proved challenging. Originality/value The paper argues that a design workshop has the potential to enrich the debate and policy work on climate adaptation. In many countries with low-planning tradition, however, additional tools are needed to help set the “adaptation agenda.”


2016 ◽  
Vol 19 (03) ◽  
pp. 391-402
Author(s):  
Sunday Amoyedo ◽  
Emmanuel Ekut ◽  
Rasaki Salami ◽  
Liliana Goncalves-Ferreira ◽  
Pascal Desegaulx

Summary This paper presents case studies focused on the interpretation and integration of seismic reservoir monitoring from several fields in conventional offshore and deepwater Niger Delta. The fields are characterized by different geological settings and development-maturity stages. We show different applications varying from qualitative to quantitative use of time-lapse (4D) seismic information. In the first case study, which is in shallow water, the field has specific reservoir-development challenges, simple geology, and is in phased development. On this field, 4D seismic, which was acquired several years ago, is characterized by poor seismic repeatability. Nevertheless, we show that because of improvements from seismic reprocessing, 4D seismic makes qualitative contributions to the ongoing field development. In the second case study, the field is characterized by complex geological settings. The 4D seismic is affected by overburden with strong lateral variations in velocity and steeply dipping structure (up to 40°). Prestack-depth-imaging (PSDM) 4D seismic is used in a more-qualitative manner to monitor gas injection, validate the geologic/reservoir models, optimize infill injector placement, and consequently, enhance field-development economics. The third case study presents a deep offshore field characterized by a complex depositional system for some reservoirs. In this example, good 4D-seismic repeatability (sum of source- and receiver-placement differences between surveys, dS+dR) is achieved, leading to an increased quantitative use of 4D monitoring for the assessment of sand/sand communication, mapping of oil/water (OWC) front, pressure evolution, and dynamic calibration of petro-elastic model (PEM), and also as a seismic-based production-logging tool. In addition, 4D seismic is used to update seismic interpretation, provide a better understanding of internal architecture of the reservoirs units, and, thereby, yield a more-robust reservoir model. The 4D seismic in this field is a key tool for field-development optimization and reservoir management. The last case study illustrates the need for seismic-feasibility studies to detect 4D responses related to production. In addition to assessing the impact of the field environment on the 4D- seismic signal, these studies also help in choosing the optimum seismic-survey type, design, and acquisition parameters. These studies would possibly lead to the adoption of new technologies such as broad-band streamer or nodes acquisition in the near future.


Sign in / Sign up

Export Citation Format

Share Document