Hydraulic Fracture Characterization Using Rapid Simulation

2021 ◽  
Author(s):  
Nefeli Moridis ◽  
John Lee ◽  
Duc Lam ◽  
Christie Schultz ◽  
Wade Wardlow

Abstract The purpose of this paper is to present a technique to estimate hydraulic fracture (HF) length, fracture conductivity, and fracture efficiency using simple and rapid but rigorous reservoir simulation matching of historical production, and where available, pressure. The methodology is particularly appropriate for analysis of horizontal wells with multiple fractures in tight unconventional or unconventional resource plays. In our discussion, we also analyze the differences between the results from decline curve analysis (DCA) approach and the Science Based Forecasting (SBF) results that this work proposes. When we characterize fracture properties with SBF, we can do a better job of forecasting than if we randomly combine fracture properties and reservoir permeability together in a decline-curve trend. The forecasts are significantly different with SBF, therefore fracture characterization plays an important role and SBF uses this characterization to produce different (and better) forecasts.

2021 ◽  
Author(s):  
Mohamed El Sgher ◽  
Kashy Aminian ◽  
Ameri Samuel

Abstract The objective of this study was to investigate the impact of the hydraulic fracturing treatment design, including cluster spacing and fracturing fluid volume on the hydraulic fracture properties and consequently, the productivity of a horizontal Marcellus Shale well with multi-stage fractures. The availability of a significant amount of advanced technical information from the Marcellus Shale Energy and Environment Laboratory (MSEEL) provided an opportunity to perform an integrated analysis to gain valuable insight into optimizing fracturing treatment and the gas recovery from Marcellus shale. The available technical information from a horizontal well at MSEEL includes well logs, image logs (both vertical and lateral), diagnostic fracture injection test (DFIT), fracturing treatment data, microseismic recording during the fracturing treatment, production logging data, and production data. The analysis of core data, image logs, and DFIT provided the necessary data for accurate prediction of the hydraulic fracture properties and confirmed the presence and distribution of natural fractures (fissures) in the formation. Furthermore, the results of the microseismic interpretation were utilized to adjust the stress conditions in the adjacent layers. The predicted hydraulic fracture properties were then imported into a reservoir simulation model, developed based on the Marcellus Shale properties, to predict the production performance of the well. Marcellus Shale properties, including porosity, permeability, adsorption characteristics, were obtained from the measurements on the core plugs and the well log data. The Quanta Geo borehole image log from the lateral section of the well was utilized to estimate the fissure distribution s in the shale. The measured and published data were utilized to develop the geomechnical factors to account for the hydraulic fracture conductivity and the formation (matrix and fissure) permeability impairments caused by the reservoir pressure depletion during the production. Stress shadowing and the geomechanical factors were found to play major roles in production performance. Their inclusion in the reservoir model provided a close agreement with the actual production performance of the well. The impact of stress shadowing is significant for Marcellus shale because of the low in-situ stress contrast between the pay zone and the adjacent zones. Stress shadowing appears to have a significant impact on hydraulic fracture properties and as result on the production during the early stages. The geomechanical factors, caused by the net stress changes have a more significant impact on the production during later stages. The cumulative gas production was found to increase as the cluster spacing was decreased (larger number of clusters). At the same time, the stress shadowing caused by the closer cluster spacing resulted in a lower fracture conductivity which in turn diminished the increase in gas production. However, the total fracture volume has more of an impact than the fracture conductivity on gas recovery. The analysis provided valuable insight for optimizing the cluster spacing and the gas recovery from Marcellus shale.


2011 ◽  
Vol 14 (02) ◽  
pp. 248-259 ◽  
Author(s):  
E.. Ozkan ◽  
M Brown ◽  
R.. Raghavan ◽  
H.. Kazemi

Summary This paper presents a discussion of fractured-horizontal-well performance in millidarcy permeability (conventional) and micro- to nanodarcy permeability (unconventional) reservoirs. It provides interpretations of the reasons to fracture horizontal wells in both types of formations. The objective of the paper is to highlight the special productivity features of unconventional shale reservoirs. By using a trilinear-flow model, it is shown that the drainage volume of a multiple-fractured horizontal well in a shale reservoir is limited to the inner reservoir between the fractures. Unlike conventional reservoirs, high reservoir permeability and high hydraulic-fracture conductivity may not warrant favorable productivity in shale reservoirs. An efficient way to improve the productivity of ultratight shale formations is to increase the density of natural fractures. High natural-fracture conductivities may not necessarily contribute to productivity either. Decreasing hydraulic-fracture spacing increases the productivity of the well, but the incremental production gain for each additional hydraulic fracture decreases. The trilinear-flow model presented in this work and the information derived from it should help the design and performance prediction of multiple-fractured horizontal wells in shale reservoirs.


SPE Journal ◽  
2017 ◽  
Vol 22 (06) ◽  
pp. 1790-1807 ◽  
Author(s):  
Deming Mao ◽  
David S. Miller ◽  
John M. Karanikas ◽  
Ed A. Lake ◽  
Phillip S. Fair ◽  
...  

Summary The classic plots of dimensionless fracture conductivity (CfD) vs. equivalent wellbore radius or equivalent negative skin are useful for evaluating the performance of hydraulic fractures (HFs) in vertical wells targeting conventional reservoirs (Prats 1961; Cinco-Ley and Samaniego-V. 1981). The increase in well productivity after hydraulic stimulation can be estimated from the “after fracturing” effective wellbore radius or from the “after fracturing” equivalent negative skin. However, this earlier work does not apply to the case of horizontal wells with multiple fractures. A revision of the diagnostic plots is needed to account for the combination of the resulting radial-flow regime and the transient effect in unconventional reservoirs with ultralow permeability. This paper reviews and extends this earlier work with the objective of making it applicable in the case of horizontal wells with multiple fractures. It also demonstrates practical application of this new technique for fracture-design optimization for horizontal wells. The influence of finite fracture conductivity (FC) on the HF flow efficiency is evaluated through analytical models, and it is confirmed by a 3D transient numerical-reservoir simulation. This work demonstrates that a redefined dimensionless fracture conductivity for horizontal wells CfD,h = 4 is found to be optimal by use of the maximum of log-normal derivative (subject to economics) for HFs in horizontal wells, and this value of CfD,h can provide 50% of the fracture-flow efficiency and 90% of the estimated ultimate recovery (EUR) that would have been obtained from an infinitely conductive fracture for the same production period. This new master plot can provide guidance for hydraulic-fracturing design and its optimization for hydrocarbon recovery in unconventional reservoirs through hydraulic fracturing in horizontal wells.


2014 ◽  
Author(s):  
M.. Tarrahi ◽  
E.. Gildin ◽  
J.. Moreno ◽  
S.. Gonzales

Abstract The deployment of fiber-optic-based distributed temperature sensing (DTS) in hydraulically fractured wells has enabled us to observe the dynamic temperature profile along the wellbore during treatment, flow back and production not only as a postprocessing step but also in real-time monitoring applications of the hydraulic fracturing process. Fracture initiation points, vertical coverage and number of created fractures can be identified by DTS data. However, to evaluate the well performance, optimize future treatments and better understand fracture modeling, additional accurate quantitative information such as fracture conductivity and geometries need to be inferred from DTS data. In this study, we propose to set up a stochastic inverse problem to infer hydraulic fracture characteristics such as fracture conductivity and geometries by integrating real-time DTS monitoring data. We develop a synthetic non-isothermal simulation model containing a horizontal well with multi-stage transverse hydraulic fractures amenable for realist real-time DTS data. We also provide a comprehensive understanding of the effectiveness of different fracture and reservoir parameters in the monitored temperature data by means of sensitivity analysis. To estimate the hydraulic fracture characteristics, we employ the ensemble Kalman filter (EnKF), an ensemble based sequential model updating method, to assimilate DTS data. The EnKF enables us to perform quantitative fracture characterization and automatic history matching. The EnKF also offers several advantages for this application, including the ensemble formulation for uncertainty assessment, convenient gradient-free implementation, and the flexibility to incorporate additional monitoring data types. Examples are presented to illustrate the suitability of the EnKF-based fracture characterization for the inversion of DTS data to infer fracture geometries and conductivity. We demonstrate that by means of the EnKF we can identify accurately fracture halflength and fracture permeability from temperature inversion.


Sign in / Sign up

Export Citation Format

Share Document