Preventing Wax Deposition in Crude Oil Using Polyethylene Butene and Nano Zinc Oxide

2021 ◽  
Author(s):  
Ademola Balogun ◽  
Toyin Odutola ◽  
Yakubu Balogun

Abstract This research examines the use of 75nm Zinc Oxide nanoparticles (Nano ZnO) and Polyethylene Butene (PEB) in reducing the viscosity of Nigerian waxy crude oil. The rheology of the crude oil was studied by measuring the viscosity and shear stress of crude samples contaminated with varying concentration of PEB (500ppm, 1000ppm, 2000ppm, 3000ppm, 4000ppm and 5000ppm), varying concentrations of Nano ZnO (1wt%, 2wt%, 3wt% and 4wt%) and different blends of PEB and Nano ZnO at temperatures of between 10°C to 35°C and shear rates from 1.7 to 1020s-1. From Rheological Modelling analysis conducted, the Power law pseudoplastic model was the best fit for the experimental data with a regression coefficient of 0.99. Analysis of crude sample before addition of inhibitor showed evidence of non-Newtonian fluid behaviour as the shear stress-shear rate relationship curves were nonlinear due to wax precipitation at low temperatures (10°C to 15°C). The waxy crude demonstrated shear thinning behaviour with increasing shear rates (increasing turbulence) and the viscosity reduced with increasing temperature. The addition of inhibitors (PEB, Nano ZnO and their blends) effected Newtonian fluid behaviour in the crude samples as the shear stress-shear rate relationship curves were linear at all temperatures under study. The optimum concentration of the inhibitors in this study is 2000ppm PEB (causing 33% viscosity reduction) and 1wt% Nano ZnO (effecting 26% viscosity reduction). The best concentration of the blend was 2000ppm PEB blended with 1wt% Nano ZnO which effected a viscosity reduction of 41%. The research demonstrates the novel application of the blend of Nano ZnO and PEB in improving flowability of Nigerian waxy crude oil especially in offshore conditions with prevailing cold temperatures.

2021 ◽  
Vol 329 ◽  
pp. 01050
Author(s):  
Huatao Wen ◽  
Songzhao Zhang ◽  
Yubo Lian ◽  
Zhiguang Zhao ◽  
Weibo Wang ◽  
...  

In this paper, graphene oxide (GO) was modified with alkyl amidopropyl diethanolamine to obtain a nano pour point depressant (GO-PPD), which was used to improve the flowability of the waxy oil extracted from Changqing Oilfield, China. Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), polarized optical microscopy (POM) and viscometer were employed to evaluate the performance of the GOPPD. The results showed that compared with traditional pour point depressant (PPD), the GO-PPD exhibited higher performance in promoting the flowability of waxy crude oil. With the presence of 500 mg/kg GO-PPD in the waxy crude oil, the pour point of which could be reduced by 5.5 °C. Also, with the presence of 500 mg/kg GO-PPD, the viscosity reduction rate of the waxy crude oil can reach up to 52% at 30 °C. Through the observation via polarized microscopy, we have also found that with the introduction of GO-PPD in the crude oil, the formation of the wax crystals can be greatly retarded. This confirmed that the graphene oxide derivates could also be served as PPD, which facilitates the flowability of certain crude oil (e.g., waxy crude oil from Changqing Oilfield).


Author(s):  
Gabriel Tanaka Nunes ◽  
Fernando Kroetz ◽  
Tainan Gabardo ◽  
Nezia de Rosso ◽  
Cezar Otaviano Ribeiro Negrao

2021 ◽  
Author(s):  
Yuanhao Li ◽  
Jian Zhao ◽  
Hang Dong ◽  
Xiangrui Xi

The microstructure and dynamical behaviors of wax crystals in waxy crude oil are the fundamental reasons for a series of physical phenomena in the process of transportation. In order to...


2020 ◽  
Vol 35 (1) ◽  
pp. 433-443
Author(s):  
Hongying Li ◽  
Chaohui Chen ◽  
Qian Huang ◽  
Yifei Ding ◽  
Yu Zhuang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document