Design of a Dislocation Well Pattern and Drilling of Shallow 3D Cluster Horizontal Wells for Development of Ultra Heavy Oil

2021 ◽  
Author(s):  
Peng Chen ◽  
Guobin Yang ◽  
Lei Chen ◽  
Guobin Zhang ◽  
Haochen Han ◽  
...  

Abstract The Junin block in Venezuela was known as an ultra heavy oil belt reserved in extra shallow layers (950ft-1,380ft) with unconsolidated formations. A cluster wells platform drilling was required for the Field Development Program (FDP). Optimisation of the well pattern and drilling of shallow 3D cluster horizontal wells for development of ultra heavy oil are presented in this paper. A well pattern of hand-shape dislocation was forwarded to enhance effective recovery of heavy oil in diamond blind area. Optimisation of the casing programs and control of the well trajectories as well as other key performance drilling were designed. A strict anti-collision barrier design and operation steps were worked out to assure the drilling safety. The loss-resistance, anti-collapse, stick-stuck proof, lubrication and reservoir protection were put into considerations for the drilling fluid design. Recovery of heavy oil was enhanced by means of electrical heating system. Drilling challenges such as shallow target zones, big build-up rate, long horizontal sections, great friction drag and torques, and well trajectories control were experienced and settled. Especially the puzzles of well trajectories control in unconsolidated formations, great friction drag and torques of strings in large displacement long horizontal sections for subsequent operations, and the unstable wellbore were tackled. A typical well data revealed that the horizontal displacement vs. TVD ratio was as high as up to 4.5. The setting depth of surface casing and the determination of KOP were critical to the horizontal wells with large displacement in shallow layers. Pressurized combined drilling and casing-running by means of top drive overcame the drag and torque and achieved planned TD and casing setting depth. The use of electrical wireline heating rod increased the temperatures in and close to the wellbore, and compensated the radius heat loss and avoided viscosity increase of heavy oil so that the output was maintained and improved. It was the first time for successful drilling of shallow 3D cluster horizontal wells with ratio of horizontal displacement vs. TVD over 3.5 in heavy oil belt of Venezuela. The innovative palm-shape dislocation of the well pattern design satisfied the demand of reservoir development and contributed to good production gain of heavy oil.

2016 ◽  
Vol 35 (2) ◽  
pp. 172-193 ◽  
Author(s):  
Kyung Jae Lee ◽  
George J Moridis ◽  
Christine A Ehlig-Economides

We have studied the hydrocarbon production from oil shale reservoirs filled with diverse initial saturations of fluid phases by implementing numerical simulations of various thermal in-situ upgrading processes. We use our in-house fully functional, fully implicit, and non-isothermal simulator, which describes the in-situ upgrading processes and hydrocarbon recovery by multiphase-multicomponent systems. We have conducted two sets of simulation cases—five-spot well pattern problems and Shell In-situ Conversion Process (ICP) problems. In the five-spot well pattern problems, we have analyzed the effects of initial fluid phase that fills the single-phase reservoir and thermal processes by four cases—electrical heating in the single-phase-aqueous reservoir, electrical heating in the single-phase-gaseous reservoir, hot water injection in the single-phase-aqueous reservoir, and hot CO2 injection in the single-phase-gaseous reservoir. In the ICP problems, we have analyzed the effects of initial saturations of fluid phases that fill two-phase-aqueous-and-gaseous reservoir by three cases—initial aqueous phase saturations of 0.16, 0.44, and 0.72. Through the simulation cases, system response and production behavior including temperature profile, kerogen fraction profile, evolution of effective porosity and absolute permeability, phase production, and product selectivity are analyzed. In the five-spot well pattern problems, it is found that the hot water injection in the aqueous phase reservoir shows the highest total hydrocarbon production, but also shows the highest water-oil-mass-ratio. Productions of phases and components show very different behavior in the cases of electrical heating in the aqueous phase reservoir and the gaseous phase reservoir. In the ICP problems, it is found that the speed of kerogen decomposition is almost identical in the cases, but the production behavior of phases and components is very different. It is found that more liquid organic phase has been produced in the case with the higher initial saturation of aqueous phase by the less production of gaseous phase.


2011 ◽  
Vol 38 (5) ◽  
pp. 600-605 ◽  
Author(s):  
Zhaomin Li ◽  
Teng Lu ◽  
Lei Tao ◽  
Binfei Li ◽  
Jiguo Zhang ◽  
...  

2004 ◽  
Vol 45 (3-4) ◽  
pp. 213-231 ◽  
Author(s):  
E.R. Rangel-German ◽  
J. Schembre ◽  
C. Sandberg ◽  
A.R. Kovscek
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document