Perfecting Straddle Packer Microfrac Stress Contrast Measurements for Hydraulic Fracturing Design in UAE Tight Oil Reservoir

2021 ◽  
Author(s):  
Javier Franquet ◽  
A. N. Martin ◽  
Viraj Telaj ◽  
Hamad Khairy ◽  
Ahmed Soliman ◽  
...  

Abstract The objective of this work was to quantify the in-situ stress contrast between the reservoir and the surrounding dense carbonate layers above and below for accurate hydraulic fracturing propagation modelling and precise fracture containment prediction. The goal was to design an optimum reservoir stimulation treatment in a Lower Cretaceous tight oil reservoir without fracturing the lower dense zone and communicating the high-permeability reservoir below. This case study came from Abu Dhabi onshore where a vertical pilot hole was drilled to perform in-situ stress testing to design a horizontal multi-stage hydraulic fractured well in a 35-ft thick reservoir. The in-situ stress tests were obtained using a wireline straddle packer microfrac tool able to measure formation breakdown and fracture closure pressures in multiple zones across the dense and reservoir layers. Standard dual-packer micro-injection tests were conducted to measure stresses in reservoir layers while single-packer sleeve-frac tests were done to breakdown high-stress dense layers. The pressure versus time was monitored in real-time to make prompt geoscience decisions during the acquisition of the data. The formation breakdown and fracture closure pressures were utilized to calibrated minimum and maximum lateral tectonic strains for accurate in-situ stress profile. Then, the calibrated stress profile was used to simulate fracture propagation and containment for the subsequent reservoir stimulation design. A total 17 microfrac stress tests were completed in 13 testing points across the vertical pilot, 12 with dual-packer injection and 5 with single-packer sleeve fracturing inflation. The fracture closure results showed stronger stress contrast towards the lower dense zone (900 psi) in comparison with the upper dense zone (600 psi). These measurements enabled the oilfield operating company to place the lateral well in a lower section of the tight reservoir without the risk of fracturing out-of-zone. The novelty of this in-situ stress testing consisted of single packer inflations (sleeve frac) in an 8½-in hole in order to achieve higher differential pressures (7,000 psi) to breakdown the dense zones. The single packer breakdown permitted fracture propagation and reliable closure measurements with dual-packer injection at a lower differential reopening pressure (4,500 psi). Microfracturing the tight formation prior to fluid sampling produced clean oil samples with 80% reduction of pump out time in comparison to conventional straddle packer sampling operations. This was a breakthrough operational outcome in sampling this reservoir.

2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Sherif M. Kholy ◽  
Ahmed G. Almetwally ◽  
Ibrahim M. Mohamed ◽  
Mehdi Loloi ◽  
Ahmed Abou-Sayed ◽  
...  

Underground injection of slurry in cycles with shut-in periods allows fracture closure and pressure dissipation which in turn prevents pressure accumulation and injection pressure increase from batch to batch. However, in many cases, the accumulation of solids on the fracture faces slows down the leak off which can delay the fracture closure up to several days. The objective in this study is to develop a new predictive method to monitor the stress increment evolution when well shut-in time between injection batches is not sufficient to allow fracture closure. The new technique predicts the fracture closure pressure from the instantaneous shut-in pressure (ISIP) and the injection formation petrophysical/mechanical properties including porosity, permeability, overburden stress, formation pore pressure, Young's modulus, and Poisson's ratio. Actual injection pressure data from a biosolids injector have been used to validate the new predictive technique. During the early well life, the match between the predicted fracture closure pressure values and those obtained from the G-function analysis was excellent, with an absolute error of less than 1%. In later injection batches, the predicted stress increment profile shows a clear trend consistent with the mechanisms of slurry injection and stress shadow analysis. Furthermore, the work shows that the injection operational parameters such as injection flow rate, injected volume per batch, and the volumetric solids concentration have strong impact on the predicted maximum disposal capacity which is reached when the injection zone in situ stress equalizes the upper barrier stress.


2018 ◽  
Vol 52 (21) ◽  
pp. 12573-12582 ◽  
Author(s):  
Jonathan K. Challis ◽  
Kevin M. Stroski ◽  
Kim H. Luong ◽  
Mark L. Hanson ◽  
Charles S. Wong

2021 ◽  
Author(s):  
Kimikazu Tsusaka ◽  
Tatsuya Fuji ◽  
Michael Alexander Shaver ◽  
Denya Pratama Yudhia ◽  
Motohiro Toma ◽  
...  

Abstract In the studied oil field in Offshore Abu Dhabi, the intermediate hole section has suffered from borehole instability and lost circulation in the higher inclination holes. Borehole instability occurs in the Nahr Umr formation. Lost circulation occurs in the Salabikh formation. This study aims to develop geomechanical model and to analyze mud weight (MW) for successful drilling through the two problematic formations in the studied oil field. In the Salabikh formation, spatial distribution of lost circulation pressure in hundreds of wells in the whole field was analyzed. The fracture closure pressure was also evaluated based on the extended leak-off test and fracture interpretation by image logging. In the Nahr Umr formation, Micro-Frac tests in a 6" hole were implemented to evaluate the minimum in-situ stress. This was the first direct measurement of the in-situ stress in the shale. The magnitude of SHMAX was back-analyzed based on the hole geometry using interpretation of six-arm caliper and analytical solution in the two key locations. This study clarified that severe lost circulation in the crest area was likely to occur due to reactivation of the pre-existing fractures in the Salabikh formation. The lost circulation pressure was found to be approximately 1.4 SG. The study also revealed that the in-situ stress regime in the Nahr Umr formation varied from the crest to flank areas. The crest and flank areas are reverse and nearly normal faulting stress regimes, respectively. Its transition area is strike-slip faulting stress regime. The regional difference in in-situ stress regime depends on the extent of mechanical anisotropy of the shale and the magnitude of tectonic strains. By integrating the results, with respect to the borehole stability analysis in the Nahr Umr formation, instead of a conventional lower hemisphere representation of the required MW based on failure width at borehole wall, the study analyzed the geometry of the failure area around the borehole wall under the allowable range of MW constrained by the lost circulation pressure in the Salabikh formation. As a result, the borehole failure cannot be avoided in any hole inclination in the Nahr Umr formation under the allowable range of MW to prevent severe lost circulation in the Salabikh formation. Therefore, appropriate practice to transport cavings is one of the key elements for safe drilling in higher hole inclination across the intermediate hole section in the studied oil field.


2022 ◽  
Author(s):  
Javier Alejandro Franquet ◽  
Viraj Nitin Telang ◽  
Hayat Abdi Ibrahim Jibar ◽  
Karem Alejandra Khan

Abstract The scope of this work is to measure downhole fracture-initiation pressures in multiple carbonate reservoirs located onshore about 50 km from Abu Dhabi city. The objective of characterizing formation breakdown across several reservoirs is to quantify the maximum gas and CO2 injection capacity on each reservoir layer for pressure maintenance and enhance oil recovery operations. This study also acquires pore pressure and fracture closure pressure measurements for calibrating the geomechanical in-situ stress model and far-field lateral strain boundary conditions. Several single-probe pressure drawdown and straddle packer microfrac injection tests provide accurate downhole measurements of reservoir pore pressure, fracture initiation, reopening and fracture closure pressures. These tests are achieved using a wireline or pipe-conveyed straddle packer logging tool capable to isolate 3 feet of openhole formation in a vertical pilot hole across five Lower Cretaceous carbonate reservoirs zones. The fracture closure pressures are obtained from three decline methods during the pressure fall-off after fracture propagation injection cycle. The three methods are: (1) square-root of the shut-in time, (2) G-Function pressure derivative, and (3) Log-Log pressure derivative. The far-field strain values are estimated by multi-variable regression from the microfrac test data and the core-calibrated static elastic properties of the formations where the stress tests are done. The reservoir pressure across these carbonate formations are between 0.48 to 0.5 psi/ft with a value repeatability of 0.05 psi among build-up tests and 0.05 psi/min of pressure stability. The formation breakdown pressures are obtained between 0.97 and 1.12 psi/ft over 5,500 psi above hydrostatic pressure. The in-situ fracture closure measurements provide the magnitude of the minimum horizontal stress 0.74 - 0.83 psi/ft which is used to back-calculate the lateral strain values (0.15 and 0.72 mStrain) as far-field boundary condition for subsequent geomechanical modeling. These measurements provide critical subsurface information to accurately predict wellbore stability, hydraulic fracture containment and CO2 injection capacity for effective enhance oil recovery within these reservoirs. This in-situ stress wellbore data represents the first of its kind in the field allowing petroleum and reservoir engineers to optimize the subsurface injection plans for efficient field developing.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5842
Author(s):  
Pengju Xing ◽  
John McLennan ◽  
Joseph Moore

A scientific injection campaign was conducted at the Utah Frontier Observatory for Research in Geothermal Energy (FORGE) site in 2017 and 2019. The testing included pump-in/shut-in, pump-in/flowback, and step rate tests. Various methods have been employed to interpret the in-situ stress from the test dataset. This study focuses on methods to interpret the minimum in-situ stress from step rate, pump-in/extended shut-in tests data obtained during the stimulation of two zones in Well 58-32. This well was drilled in low-permeability granitoid. A temperature of 199 °C was recorded at the well’s total depth of 2297 m relative to the rotary Kelly bushing (RKB). The lower zone (Zone 1) consisted of 46 m of the openhole at the toe of the well. Fractures in the upper zone (Zone 2) were stimulated between 2123–2126 m measured depths (MD) behind the casing. The closure stress gradient variation depended on the depth and the injection chronology. The closure stress was found to increase with the pumping rate/volume. This stress variation could indicate that poroelastic effects (“back stress”) and the presence of adjacent natural fractures may play an important role in the interpretation of fracture closure stress. Further, progressively increasing local total stresses may, consequently, have practical applications when moderate volumes of fluid are injected in a naturally fractured or high-temperature reservoir. The alternative techniques that use pump-in/flowback tests and temperature signatures provide a valuable perspective view of the in-situ stress measurements.


1990 ◽  
Vol 5 (03) ◽  
pp. 248-254 ◽  
Author(s):  
J.M. Gatens ◽  
C.W. Harrison ◽  
D.E. Lancaster ◽  
F.K. Guidry

Sign in / Sign up

Export Citation Format

Share Document