Multiple In-Situ Stress Measurements in Carbonate Reservoirs for CO2 Injection Capability Assessment and Far-Field Strain Calibrations

2022 ◽  
Javier Alejandro Franquet ◽  
Viraj Nitin Telang ◽  
Hayat Abdi Ibrahim Jibar ◽  
Karem Alejandra Khan

Abstract The scope of this work is to measure downhole fracture-initiation pressures in multiple carbonate reservoirs located onshore about 50 km from Abu Dhabi city. The objective of characterizing formation breakdown across several reservoirs is to quantify the maximum gas and CO2 injection capacity on each reservoir layer for pressure maintenance and enhance oil recovery operations. This study also acquires pore pressure and fracture closure pressure measurements for calibrating the geomechanical in-situ stress model and far-field lateral strain boundary conditions. Several single-probe pressure drawdown and straddle packer microfrac injection tests provide accurate downhole measurements of reservoir pore pressure, fracture initiation, reopening and fracture closure pressures. These tests are achieved using a wireline or pipe-conveyed straddle packer logging tool capable to isolate 3 feet of openhole formation in a vertical pilot hole across five Lower Cretaceous carbonate reservoirs zones. The fracture closure pressures are obtained from three decline methods during the pressure fall-off after fracture propagation injection cycle. The three methods are: (1) square-root of the shut-in time, (2) G-Function pressure derivative, and (3) Log-Log pressure derivative. The far-field strain values are estimated by multi-variable regression from the microfrac test data and the core-calibrated static elastic properties of the formations where the stress tests are done. The reservoir pressure across these carbonate formations are between 0.48 to 0.5 psi/ft with a value repeatability of 0.05 psi among build-up tests and 0.05 psi/min of pressure stability. The formation breakdown pressures are obtained between 0.97 and 1.12 psi/ft over 5,500 psi above hydrostatic pressure. The in-situ fracture closure measurements provide the magnitude of the minimum horizontal stress 0.74 - 0.83 psi/ft which is used to back-calculate the lateral strain values (0.15 and 0.72 mStrain) as far-field boundary condition for subsequent geomechanical modeling. These measurements provide critical subsurface information to accurately predict wellbore stability, hydraulic fracture containment and CO2 injection capacity for effective enhance oil recovery within these reservoirs. This in-situ stress wellbore data represents the first of its kind in the field allowing petroleum and reservoir engineers to optimize the subsurface injection plans for efficient field developing.

1994 ◽  
Vol 31 (5) ◽  
pp. 779-787 ◽  
Yarlong Wang ◽  
Samuel S. Shen ◽  
Haibing Cheng

The instantaneous shut-in pressure has been used to estimate the far-field in situ minimum principal stress during microfracture testing. A plastic zone can be induced near the fracture. Because of the early plastic (irreversible) deformation induced near the fracture, the irreversible deformation near the fracture surface reduces the fracture pressure and generates a discrepancy between the far-field minimum stress and the fracture closure pressure, which has been identified as the minimum in situ stress in the past. In this paper, a finite-element numerical model is used to investigate this discrepancy due to the plastic deformation near a fracture. It is concluded that a plastic zone can be generated near a hydraulic fracture in poorly consolidated media. The fracture closure pressure can be much smaller than the minimum in situ stress due to the irreversible deformation generated near the fracture during the active fracturing period. Thus, one cannot use the conventional hydraulic-fracturing technique to interpret the minifracture tests in a poorly consolidated medium such as oil sand. Key words : microfracturing, in situ stress measurements, oil sands, plasticity, numerical simulation.

2018 ◽  
Vol 140 (12) ◽  
Sherif M. Kholy ◽  
Ahmed G. Almetwally ◽  
Ibrahim M. Mohamed ◽  
Mehdi Loloi ◽  
Ahmed Abou-Sayed ◽  

Underground injection of slurry in cycles with shut-in periods allows fracture closure and pressure dissipation which in turn prevents pressure accumulation and injection pressure increase from batch to batch. However, in many cases, the accumulation of solids on the fracture faces slows down the leak off which can delay the fracture closure up to several days. The objective in this study is to develop a new predictive method to monitor the stress increment evolution when well shut-in time between injection batches is not sufficient to allow fracture closure. The new technique predicts the fracture closure pressure from the instantaneous shut-in pressure (ISIP) and the injection formation petrophysical/mechanical properties including porosity, permeability, overburden stress, formation pore pressure, Young's modulus, and Poisson's ratio. Actual injection pressure data from a biosolids injector have been used to validate the new predictive technique. During the early well life, the match between the predicted fracture closure pressure values and those obtained from the G-function analysis was excellent, with an absolute error of less than 1%. In later injection batches, the predicted stress increment profile shows a clear trend consistent with the mechanisms of slurry injection and stress shadow analysis. Furthermore, the work shows that the injection operational parameters such as injection flow rate, injected volume per batch, and the volumetric solids concentration have strong impact on the predicted maximum disposal capacity which is reached when the injection zone in situ stress equalizes the upper barrier stress.

2021 ◽  
Jianguo Zhang ◽  
Karthik Mahadev ◽  
Stephen Edwards ◽  
Alan Rodgerson

Abstract Maximum horizontal stress (SH) and stress path (change of SH and minimum horizontal stress with depletion) are the two most difficult parameters to define for an oilfield geomechanical model. Understanding these in-situ stresses is critical to the success of operations and development, especially when production is underway, and the reservoir depletion begins. This paper introduces a method to define them through the analysis of actual minifrac data. Field examples of applications on minifrac failure analysis and operational pressure prediction are also presented. It is commonly accepted that one of the best methods to determine the minimum horizontal stress (Sh) is the use of pressure fall-off analysis of a minifrac test. Unlike Sh, the magnitude of SH cannot be measured directly. Instead it is back calculated by using fracture initiation pressure (FIP) and Sh derived from minifrac data. After non-depleted Sh and SH are defined, their apparent Poisson's Ratios (APR) are calculated using the Eaton equation. These APRs define Sh and SH in virgin sand to encapsulate all other factors that influence in-situ stresses such as tectonic, thermal, osmotic and poro-elastic effects. These values can then be used to estimate stress path through interpretation of additional minifrac data derived from a depleted sand. A geomechanical model is developed based on APRs and stress paths to predict minifrac operation pressures. Three cases are included to show that the margin of error for FIP and fracture closure pressure (FCP) is less than 2%, fracture breakdown pressure (FBP) less than 4%. Two field cases in deep-water wells in the Gulf of Mexico show that the reduction of SH with depletion is lower than that for Sh.

2020 ◽  
Vol 185 ◽  
pp. 106601
Chuyen Pham ◽  
Chandong Chang ◽  
Youngho Jang ◽  
Abdurahiman Kutty ◽  
Jaehoon Jeong

2021 ◽  
Kimikazu Tsusaka ◽  
Tatsuya Fuji ◽  
Michael Alexander Shaver ◽  
Denya Pratama Yudhia ◽  
Motohiro Toma ◽  

Abstract In the studied oil field in Offshore Abu Dhabi, the intermediate hole section has suffered from borehole instability and lost circulation in the higher inclination holes. Borehole instability occurs in the Nahr Umr formation. Lost circulation occurs in the Salabikh formation. This study aims to develop geomechanical model and to analyze mud weight (MW) for successful drilling through the two problematic formations in the studied oil field. In the Salabikh formation, spatial distribution of lost circulation pressure in hundreds of wells in the whole field was analyzed. The fracture closure pressure was also evaluated based on the extended leak-off test and fracture interpretation by image logging. In the Nahr Umr formation, Micro-Frac tests in a 6" hole were implemented to evaluate the minimum in-situ stress. This was the first direct measurement of the in-situ stress in the shale. The magnitude of SHMAX was back-analyzed based on the hole geometry using interpretation of six-arm caliper and analytical solution in the two key locations. This study clarified that severe lost circulation in the crest area was likely to occur due to reactivation of the pre-existing fractures in the Salabikh formation. The lost circulation pressure was found to be approximately 1.4 SG. The study also revealed that the in-situ stress regime in the Nahr Umr formation varied from the crest to flank areas. The crest and flank areas are reverse and nearly normal faulting stress regimes, respectively. Its transition area is strike-slip faulting stress regime. The regional difference in in-situ stress regime depends on the extent of mechanical anisotropy of the shale and the magnitude of tectonic strains. By integrating the results, with respect to the borehole stability analysis in the Nahr Umr formation, instead of a conventional lower hemisphere representation of the required MW based on failure width at borehole wall, the study analyzed the geometry of the failure area around the borehole wall under the allowable range of MW constrained by the lost circulation pressure in the Salabikh formation. As a result, the borehole failure cannot be avoided in any hole inclination in the Nahr Umr formation under the allowable range of MW to prevent severe lost circulation in the Salabikh formation. Therefore, appropriate practice to transport cavings is one of the key elements for safe drilling in higher hole inclination across the intermediate hole section in the studied oil field.

2012 ◽  
Vol 616-618 ◽  
pp. 435-440
Yan Jun Feng ◽  
Xiu Wei Shi

This paper presents results of a comprehensive study involving analytical and field experimental investigations into the factors controlling the hydraulic fracturing process. Analytical theories for fracture initiation of vertical and horizontal borehole are reviewed. The initiation and propagation process of hydraulic fracturing is performed in the field by means of hydraulic fracturing and stepwise hydraulic fracturing, the effect of factors such as in-situ stress and rock strength on fracture propagation process is studied and discussed. The fracture initiation pressures estimated from the analytical model and field experiments are compared as well as the fracturing process during case 1and case 2. Results from the analytical model and field experiments conducted in this study are interpreted with a particular effort to enlighten the factors controlling the hydraulic fracturing process.

2019 ◽  
Vol 134 ◽  
pp. 103432 ◽  
Abdulla Alhosani ◽  
Alessio Scanziani ◽  
Qingyang Lin ◽  
Ziqing Pan ◽  
Branko Bijeljic ◽  

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5842
Pengju Xing ◽  
John McLennan ◽  
Joseph Moore

A scientific injection campaign was conducted at the Utah Frontier Observatory for Research in Geothermal Energy (FORGE) site in 2017 and 2019. The testing included pump-in/shut-in, pump-in/flowback, and step rate tests. Various methods have been employed to interpret the in-situ stress from the test dataset. This study focuses on methods to interpret the minimum in-situ stress from step rate, pump-in/extended shut-in tests data obtained during the stimulation of two zones in Well 58-32. This well was drilled in low-permeability granitoid. A temperature of 199 °C was recorded at the well’s total depth of 2297 m relative to the rotary Kelly bushing (RKB). The lower zone (Zone 1) consisted of 46 m of the openhole at the toe of the well. Fractures in the upper zone (Zone 2) were stimulated between 2123–2126 m measured depths (MD) behind the casing. The closure stress gradient variation depended on the depth and the injection chronology. The closure stress was found to increase with the pumping rate/volume. This stress variation could indicate that poroelastic effects (“back stress”) and the presence of adjacent natural fractures may play an important role in the interpretation of fracture closure stress. Further, progressively increasing local total stresses may, consequently, have practical applications when moderate volumes of fluid are injected in a naturally fractured or high-temperature reservoir. The alternative techniques that use pump-in/flowback tests and temperature signatures provide a valuable perspective view of the in-situ stress measurements.

Sign in / Sign up

Export Citation Format

Share Document