Characterization of Tight Carbonate Reservoir by Using Nuclear Magnetic Resonance Log Analysis in the Bahrain Field

2021 ◽  
Author(s):  
Rabab Al Saffar ◽  
Michael Dowen

Abstract The Bahrain Field (the "Field"), discovered in 1932, is an asymmetric anticline trending in a North-South direction of the Kingdom of Bahrain. It is a geologically complex field with 16 multi-stack carbonate and sandstone reservoirs, most of them oil bearing. The fluids varying from shallow tarry oil in Aruma to dry gas in the Khuff and pre-Khuff reservoirs. The Field has more than 2000 wells of which 90% have good quality log data. The Ostracod and Magwa reservoirs are heterogeneous, layered tight reservoirs and have been on production since 1964. The Ostracod reservoir consists of very heterogeneous with limestone intervals intercalated between shale layers, with a total thickness of around 200 ft. The Magwa reservoir conformably underlies the Ostracod reservoir. The Ostracod averages 120 ft in thickness and is dominated by limestone with high porosity, low permeability, and variable water saturations. Core derived permeability measurements are usually less than 5 mD and porosities average 22%. Production performance of individual wells is extremely variable and in many cases appears to be at odds with log-calculated saturations. Wells having good oil saturation often produce water and wells with low oil saturation produce high volumes of oil. Several studies have been conducted in an attempt to understand and resolve this. The variability of oil saturation which has been mapped both laterally across the Field and vertically within wells, led to the question of what caused the variation in oil saturation. The variation is not a function of depth, which one might expect. Causes might include oil failure to migrate into certain reservoir compartments, a loss of the original charge to shallower reservoir or the oil charge been restricted by rock quality. This paper attempts to address the variability in saturations seen across the Field and link known productivity to the Petrophysical interpretations. Nuclear Magnetic Resonance (NMR) logs had been employed in a targeted area of the Field in order to investigate rock quality in an attempt to explain the oil saturation distribution. A small NMR core study was undertaken in order to calibrate the NMR log response. The NMR data had been initially processed with what was considered a representative cut-off for Middle East Carbaonte rocks. This core study resulted in a surprisingly low series of T2 cut-off. The NMR logs were reprocessed with the more representative T2 cut-off. The resulting bound and free fluid fractions seemed to explain the observed well production.

2021 ◽  
Author(s):  
Yongsheng Tan ◽  
Qi Li ◽  
Liang Xu ◽  
Xiaoyan Zhang ◽  
Tao Yu

<p>The wettability, fingering effect and strong heterogeneity of carbonate reservoirs lead to low oil recovery. However, carbon dioxide (CO<sub>2</sub>) displacement is an effective method to improve oil recovery for carbonate reservoirs. Saturated CO<sub>2</sub> nanofluids combines the advantages of CO<sub>2</sub> and nanofluids, which can change the reservoir wettability and improve the sweep area to achieve the purpose of enhanced oil recovery (EOR), so it is a promising technique in petroleum industry. In this study, comparative experiments of CO<sub>2</sub> flooding and saturated CO<sub>2</sub> nanofluids flooding were carried out in carbonate reservoir cores. The nuclear magnetic resonance (NMR) instrument was used to clarify oil distribution during core flooding processes. For the CO<sub>2</sub> displacement experiment, the results show that viscous fingering and channeling are obvious during CO<sub>2</sub> flooding, the oil is mainly produced from the big pores, and the residual oil is trapped in the small pores. For the saturated CO<sub>2</sub> nanofluids displacement experiment, the results show that saturated CO<sub>2</sub> nanofluids inhibit CO<sub>2</sub> channeling and fingering, the oil is produced from the big pores and small pores, the residual oil is still trapped in the small pores, but the NMR signal intensity of the residual oil is significantly reduced. The final oil recovery of saturated CO<sub>2</sub> nanofluids displacement is higher than that of CO<sub>2</sub> displacement. This study provides a significant reference for EOR in carbonate reservoirs. Meanwhile, it promotes the application of nanofluids in energy exploitation and CO<sub>2</sub> utilization.</p>


2019 ◽  
Vol 17 (2) ◽  
pp. 328-338
Author(s):  
Xiaojun Wang ◽  
Zhenlin Wang ◽  
Cheng Feng ◽  
Tao Zhu ◽  
Ni Zhang ◽  
...  

Abstract Due to complex lithology, strong heterogeneity, low porosity and permeability; resistivity logging faces great challenges in oil saturation prediction of tight conglomerate reservoirs. First, 10 typical core samples were selected to measure and analyse the porosity, permeability, nuclear magnetic resonance (NMR) T2 spectrum and mercury injection capillary pressure (MICP) curve. Second, an empirical method was proposed for reconstructing the NMR T2 spectrum under completely watered conditions using MICP curve based on the ‘three-piece’ power function. The parameters of different models were calibrated via experimental data analysis, respectively. The 180 core experimental data from an MICP curve were used as the input database. Porosity and permeability were regarded as the MICP data selection criteria to apply this model in formation evaluation. The comparison results show good application effects. Finally, to reflect oil saturation, the ratio of T2 geometric means of NMR T2 spectra under oil-bearing and completely watered conditions was proposed. Then, the quantitative relation between oil saturation and the proposed ratio was established via experimental data from the sealed cores, which established a quantitative prediction on oil saturation of tight conglomerate reservoirs. This showed a good application effect. The average relative error and the root mean square error (RMSE) of the predicted oil saturation and sealed coring measurement were around 10 and 3%, respectively. As the proposed method is only influenced by the wettability of reservoir and viscosity of oil, it is not only appropriate for the studied area, but also for other water-wet reservoirs containing light oil. It is important for identifying oil layers, calculating oil saturation and improving log interpretation accuracy in tight conglomerate reservoirs.


2016 ◽  
Author(s):  
Ahmed Abouzaid ◽  
Holger Thern ◽  
Mohamed Said ◽  
Mohammad ElSaqqa ◽  
Mohamed Elbastawesy ◽  
...  

ABSTRACT The evaluation of logging data in shaly sand reservoirs can be a challenging task, particularly in the presence of accessory minerals such as glauconite. Accessory minerals affect the measurements of conventional logging tools, thus, introducing large uncertainties for estimated petrophysical properties and reservoir characterization. The application of traditional Gamma Ray and Density-Neutron crossover methods can become unreliable even for the simple objective of differentiating reservoir from non-reservoir zones. This was the situation for many years in the glauconite-rich Upper Bahariya formation, Western Desert, Egypt. Formation evaluation was challenging and the results often questionable. Adding Nuclear Magnetic Resonance (NMR) Logging While Drilling (LWD) data in three wells changed the situation radically. The NMR data unambiguously indicate pay zones and simplify the interpretation for accurate porosity and fluid saturation dramatically. Key to success is NMR total porosity being unaffected by the presence of accessory minerals. NMR moveable fluid directly points to the pay zones in the reservoir, while clay-bound and capillary-bound water volumes reflect variations in rock quality and lithology. Although the NMR total porosity is lithology independent, the presence of glauconite affects the NMR T2 distribution by shifting the water T2 response to shorter T2 times. This requires an adjustment of the T2 cutoff position for separating bound water from movable hydrocarbons. A varying T2 cutoff was computed by comparing NMR bound water to resistivity-based water saturation. The calibrated T2 cutoff exhibits an increase with depth indicating a decreasing amount of glauconite with depth throughout the Upper Bahariya formation. Based on these volumetrics, an improved NMR permeability log was calculated, now accurately delineating variations in rock quality throughout the different pay zones. In addition, viscosity was estimated from the oil NMR signal. The estimated values match the expected values very well and illustrate the potential of NMR to indicate viscosity variations. Many of these results are available today already in real-time by transmitting NMR T2 distributions to surface while drilling. Besides the application for formation evaluation, the data can be used to initiate optimized side-tracking and completion decisions directly after finishing the drilling operations.


Sign in / Sign up

Export Citation Format

Share Document