Applied Transfer Learning for Production Forecasting in Shale Reservoirs

2021 ◽  
Author(s):  
Uchenna Odi ◽  
Kola Ayeni ◽  
Nouf Alsulaiman ◽  
Karri Reddy ◽  
Kathy Ball ◽  
...  

Abstract There are documented cases of machine learning being applied to different segments of the oil and gas industry with different levels of success. These successes have not been readily transferred to production forecasting for unconventional oil and gas reservoirs because of sparsity of production data at the early stage of production. Sparsity of unconventional production data is a challenge, but transfer learning can mitigate this challenge. Application of machine learning for production forecasting is challenging in areas with insufficient data. Transfer learning makes it possible to carry over the information gathered from well-established areas with rich data to areas with relatively limited data. This study outlines the background theory along with the application of transfer learning in unconventionals to aid in production forecasting. Similarity metrics are utilized in finding candidates for transfer learning by using key drivers for reservoir performance. Key drivers include similar reservoir mechanisms and subsurface structures. After training the model on a related field with rich data, most of the primary parameters learned and stored in a representative machine or deep learning model can be re-used in a transfer learning manner. By employing the already learned basic features, models with sparse data have been enriched by using transfer learning. The approach has been outlined in a stepwise manner with details. With the help of the insights transferred from related sites with rich data, the uncertainty in production forecasting has decreased, and the accuracy of the predictions increased. As a result, the details of selecting a related site to be used for transfer learning along with the challenges and steps in achieving the forecasts have been outlined in detail. There are limited studies in oil and gas literature on transfer learning for oil and gas reservoirs. If applied with care, it is a powerful method for increasing the success of models with sparse data. This study uses transfer learning to encapsulate the basics of the substructure of a well-known area and uses this information to empower the model. This study investigates the application to unconventional shale reservoirs, which have limited studies on transfer learning.

2015 ◽  
Vol 75 (11) ◽  
Author(s):  
Mostafa Alizadeh ◽  
Zohreh Movahed ◽  
Radzuan Junin ◽  
Rahmat Mohsin ◽  
Mehdi Alizadeh ◽  
...  

The purpose of modelling the fractures is to create simulation properties with the power to predict the reservoir behaviour. Petrel software is one of the best softwares in the market that can do this task very well, but there is no available educational paper for every researcher. Therefore, in this work, a fracture modelling job was done in one of the most important Iranian fields using Petrel software and image log data. The purpose of this work was  to determine the new information of the fractures in Gachsaran field and also to prepare a valuable educational paper for other researchers who are interested to learn about the fracture modelling. This work revealed that in this field, the longitudinal fractures had been parallel to minimum stress (Zagros trend), fracture intensity was the nearest to the major fault and northern flank, fracture porosity was 0-7%, fracture permeability was 0-6000 MD, and more valuable information is provided in this paper.


Sign in / Sign up

Export Citation Format

Share Document