User Experience Survey of Innovative Softwares in Evaluation of Industrial-Related Ergonomic Hazards: A Focus on 3D Motion Capture Assessment

2021 ◽  
Author(s):  
Bufford Advincula

Abstract This paper aims to present user experience survey results of innovative software assessment technologies available in the market aimed in evaluating risks of industrial-related ergonomic hazards. The scope covers industrial ergonomics softwares currently available for purchase where time-limited free trial is offered, particularly those that utilize 3D Motion Capture Assessment which relies on kinematic inputs aided by non-invasive computer technology and artificial intelligence, and makes use of pre-determined weightings based on biomechanical risk factors. In light of the inclusion criterion, six industrial ergonomics softwares were considered. User field trials were conducted during January to September 2020 among 10 Occupational Health Subject Matter Experts (OH SME) coming from seven oil and gas Group Companies. Each OH SME attended a product demonstration by the shortlisted software vendor, participated in software trial at their respective workplaces, and provided feedback on the software's usability by filling out a survey questionnaire. OH SME responses were then collected for further qualitative analyses. Three of the eligible softwares relied on photo snapshot capturing work activity where subsequent analysis is done through competent professional judgment of qualitative risk. Another three were dependent on 3D Motion Capture Assessment where upper and lower limb motions of employees are digitally captured, recorded, and analyzed. Two of the softwares utilized sensors attached to different parts of employee's body, while one relied on Android/Smartphone snapshot of work activity and analyzed by the software's algorithm. Analyses of OH SME feedback revealed majority of them (n = 7) preferred using 3D Motion Capture Assessment over professional judgment of qualitative risk as an effective tool in evaluation of industrial work-related ergonomic risks. 3D Motion Capture Assessment provided accurate measurements of employee joint postures and postural angles. The tool ensured consistency in risk scoring for a particular industrial-related work activity as the calculation is standardized. The tool's algorithm is aligned with globally accepted assessment tools in evaluating ergonomic risks which enhances its validity. OH SMEs have expressed concerns on use of Android/Smartphone in Critical Infrastructure and Coastal Protection Authority facilities, training time needed in learning the software, and repetitive use of motion sensors among different employees which may lead to personal hygiene issues. 3D Motion Capture Assessment is a novel ergonomics software tool that can be used in real-time and accurate evaluation of ergonomic risks arising from industrial work-related activities. It can replace observational assessment of a work activity that may be prone to professional judgment errors. However, more validation and reliability studies need to be done in future as well as determining association between ergonomics risk scores obtained from the software and prevalence of work-related musculoskeletal disorders.

Author(s):  
Jonathan Kenneth Sinclair ◽  
Lindsay Bottoms

AbstractRecent epidemiological analyses in fencing have shown that injuries and pain linked specifically to fencing training/competition were evident in 92.8% of fencers. Specifically the prevalence of Achilles tendon pathology has increased substantially in recent years, and males have been identified as being at greater risk of Achilles tendon injury compared to their female counterparts. This study aimed to examine gender differences in Achilles tendon loading during the fencing lunge.Achilles tendon load was obtained from eight male and eight female club level epee fencers using a 3D motion capture system and force platform information as they completed simulated lunges. Independent t-tests were performed on the data to determine whether differences existed.The results show that males were associated with significantly greater Achilles tendon loading rates in comparison to females.This suggests that male fencers may be at greater risk from Achilles tendon pathology as a function of fencing training/ competition.


2017 ◽  
Vol 49 (5S) ◽  
pp. 757
Author(s):  
Jessica L. Halle ◽  
Jacob A. Goldsmith ◽  
Cameron Trepeck ◽  
Ryan K. Byrnes ◽  
Daniel M. Cooke ◽  
...  

2012 ◽  
Vol 45 ◽  
pp. S376
Author(s):  
Anke A. Van Campen ◽  
Friedl De Groote ◽  
Ilse Jonkers ◽  
Joris De Schutter

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7312
Author(s):  
Julia Mazzarella ◽  
Mike McNally ◽  
Daniel Richie ◽  
Ajit M. W. Chaudhari ◽  
John A. Buford ◽  
...  

Perinatal stroke (PS), occurring between 20 weeks of gestation and 28 days of life, is a leading cause of hemiplegic cerebral palsy (HCP). Hallmarks of HCP are motor and sensory impairments on one side of the body—especially the arm and hand contralateral to the stroke (involved side). HCP is diagnosed months or years after the original brain injury. One effective early intervention for this population is constraint-induced movement therapy (CIMT), where the uninvolved arm is constrained by a mitt or cast, and therapeutic activities are performed with the involved arm. In this preliminary investigation, we used 3D motion capture to measure the spatiotemporal characteristics of pre-reaching upper extremity movements and any changes that occurred when constraint was applied in a real-time laboratory simulation. Participants were N = 14 full-term infants: N = six infants with typical development; and N = eight infants with PS (N = three infants with PS were later diagnosed with cerebral palsy (CP)) followed longitudinally from 2 to 6 months of age. We aimed to evaluate the feasibility of using 3D motion capture to identify the differences in the spatiotemporal characteristics of the pre-reaching upper extremity movements between the diagnosis group, involved versus uninvolved side, and with versus and without constraint applied in real time. This would be an excellent application of wearable sensors, allowing some of these measurements to be taken in a clinical or home setting.


Author(s):  
Per-Anders Fransson ◽  
Maria H. Nilsson ◽  
Diederick C. Niehorster ◽  
Marcus Nyström ◽  
Stig Rehncrona ◽  
...  

Abstract Background Tremor is a cardinal symptom of Parkinson’s disease (PD) that may cause severe disability. As such, objective methods to determine the exact characteristics of the tremor may improve the evaluation of therapy. This methodology study aims to validate the utility of two objective technical methods of recording Parkinsonian tremor and evaluate their ability to determine the effects of Deep Brain Stimulation (DBS) of the subthalamic nucleus and of vision. Methods We studied 10 patients with idiopathic PD, who were responsive to L-Dopa and had more than 1 year use of bilateral subthalamic nucleus stimulation. The patients did not have to display visible tremor to be included in the study. Tremor was recorded with two objective methods, a force platform and a 3 dimensional (3D) motion capture system that tracked movements in four key proximal sections of the body (knee, hip, shoulder and head). They were assessed after an overnight withdrawal of anti-PD medications with DBS ON and OFF and with eyes open and closed during unperturbed and perturbed stance with randomized calf vibration, using a randomized test order design. Results Tremor was detected with the Unified Parkinson’s Disease Rating Scale (UPDRS) in 6 of 10 patients but only distally (hands and feet) with DBS OFF. With the force platform and the 3D motion capture system, tremor was detected in 6 of 10 and 7 of 10 patients respectively, mostly in DBS OFF but also with DBS ON in some patients. The 3D motion capture system revealed that more than one body section was usually affected by tremor and that the tremor amplitude was non-uniform, but the frequency almost identical, across sites. DBS reduced tremor amplitude non-uniformly across the body. Visual input mostly reduced tremor amplitude with DBS ON. Conclusions Technical recording methods offer objective and sensitive detection of tremor that provide detailed characteristics such as peak amplitude, frequency and distribution pattern, and thus, provide information that can guide the optimization of treatments. Both methods detected the effects of DBS and visual input but the 3D motion system was more versatile in that it could detail the presence and properties of tremor at individual body sections.


Sign in / Sign up

Export Citation Format

Share Document