Interdisciplinary Approach for Wellbore Stability During Slimhole Drilling at Volga-Urals Basin Oilfield

2021 ◽  
Author(s):  
Anna Vladimirovna Norkina ◽  
Sergey Mihailovich Karpukhin ◽  
Konstantin Urjevich Ruban ◽  
Yuriy Anatoljevich Petrakov ◽  
Alexey Evgenjevich Sobolev

Abstract The design features and the need to use a water-based solution make the task of ensuring trouble-free drilling of vertical wells non-trivial. This work is an example of an interdisciplinary approach to the analysis of the mechanisms of instability of the wellbore. Instability can be caused by a complex of reasons, in this case, standard geomechanical calculations are not enough to solve the problem. Engineering calculations and laboratory chemical studies are integrated into the process of geomechanical modeling. The recommendations developed in all three areas are interdependent and inseparable from each other. To achieve good results, it is necessary to comply with a set of measures at the same time. The key tasks of the project were: determination of drilling density, tripping the pipe conditions, parameters of the drilling fluid rheology, selection of a system for the best inhibition of clay swelling.

Author(s):  
Petar Mijić ◽  
Nediljka Gaurina-Međimurec ◽  
Borivoje Pašić

About 75% of all formations drilled worldwide are shale formations and 90% of all wellbore instability problems occur in shale formations. This increases the overall cost of drilling. Therefore, drilling through shale formations, which have nanosized pores with nanodarcy permeability still need better solutions since the additives used in the conventional drilling fluids are too large to plug them. One of the solutions to drilling problems can be adjusting drilling fluid properties by adding nanoparticles. Drilling mud with nanoparticles can physically plug nanosized pores in shale formations and thus reduce the shale permeability, which results in reducing the pressure transmission and improving wellbore stability. Furthermore, the drilling fluid with nanoparticles, creates a very thin, low permeability filter cake resulting in the reduction of the filtrate penetration into the shale. This thin filter cake implies high potential for reducing the differential pressure sticking. In addition, borehole problems such as too high drag and torque can be reduced by adding nanoparticles to drilling fluids. This paper presents the results of laboratory examination of the influence of commercially available nanoparticles of SiO2 (dry SiO2 and water-based dispersion of 30 wt% of silica), and TiO2 (water-based dispersion of 40 wt% of titania) in concentrations of 0.5 wt% and 1 wt% on the properties of water-based fluids. Special emphasis is put on the determination of lubricating properties of the water-based drilling fluids. Nanoparticles added to the base mud without any lubricant do not improve its lubricity performance, regardless of their concentrations and type. However, by adding 0.5 wt% SiO2-disp to the base mud with lubricant, its lubricity coefficient is reduced by 4.6%, and by adding 1 wt% TiO2-disp to the base mud with lubricant, its lubricity coefficient is reduced by 14.3%.


2001 ◽  
Vol 41 (1) ◽  
pp. 609
Author(s):  
X. Chen ◽  
C.P. Tan ◽  
C.M. Haberfield

To prevent or minimise wellbore instability problems, it is critical to determine the optimum wellbore profile and to design an appropriate mud weight program based on wellbore stability analysis. It is a complex and iterative decisionmaking procedure since various factors, such as in-situ stress regime, material strength and poroelastic properties, strength and poroelastic anisotropies, initial and induced pore pressures, must be considered in the assessment and determination.This paper describes the methodology and procedure for determination of optimum wellbore profile and mud weight program based on rock mechanics consideration. The methodology is presented in the form of guideline charts and the procedure of applying the methodology is described. The application of the methodology and procedure is demonstrated through two field case studies with different in-situ stress regimes in Australia and Indonesia.


2020 ◽  
Author(s):  
Xian-Bin Huang ◽  
Jin-Sheng Sun ◽  
Yi Huang ◽  
Bang-Chuan Yan ◽  
Xiao-Dong Dong ◽  
...  

Abstract High-performance water-based drilling fluids (HPWBFs) are essential to wellbore stability in shale gas exploration and development. Laponite is a synthetic hectorite clay composed of disk-shaped nanoparticles. This paper analyzed the application potential of laponite in HPWBFs by evaluating its shale inhibition, plugging and lubrication performances. Shale inhibition performance was studied by linear swelling test and shale recovery test. Plugging performance was analyzed by nitrogen adsorption experiment and scanning electron microscope (SEM) observation. Extreme pressure lubricity test was used to evaluate the lubrication property. Experimental results show that laponite has good shale inhibition property, which is better than commonly used shale inhibitors, such as polyamine and KCl. Laponite can effectively plug shale pores. It considerably decreases the surface area and pore volume of shale, and SEM results show that it can reduce the porosity of shale and form a seamless nanofilm. Laponite is beneficial to increase lubricating property of drilling fluid by enhancing the drill pipes/wellbore interface smoothness and isolating the direct contact between wellbore and drill string. Besides, laponite can reduce the fluid loss volume. According to mechanism analysis, the good performance of laponite nanoparticles is mainly attributed to the disk-like nanostructure and the charged surfaces.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Pengcheng Wu ◽  
Chengxu Zhong ◽  
Zhengtao Li ◽  
Zhen Zhang ◽  
Zhiyuan Wang ◽  
...  

Finding out the reasons for wellbore instability in the Longmaxi Formation and Wufeng Formation and putting forward drilling fluid technical countermeasures to strengthen and stabilize the wellbore are very crucial to horizontal drilling. Based on X-ray diffraction, electron microscope scanning, linear swelling experiment, and hot-rolling dispersion experiment, the physicochemical mechanism of wellbore instability in complex strata was revealed, and thus, the coordinated wellbore stability method can be put forward, which is “strengthening plugging of micropores, inhibiting filtrate invasion, and retarding pressure transmission.” Using a sand bed filtration tester, high-temperature and high-pressure plugging simulation experimental device, and microporous membrane and other experimental devices, the oil-based drilling fluid treatment agent was researched and selected, and a set of an enhanced plugging drilling fluid system suitable for shale gas horizontal well was constructed. Its temperature resistance is 135°C and it has preferable contamination resistibility (10% NaCl, 1% CaCl2, and 8% poor clay). The bearing capacity of a 400 μm fracture is 5 MPa, and the filtration loss of 0.22 μm and 0.45 μm microporous membranes is zero. Compared with previous field drilling fluids, the constructed oil-based drilling fluid system has a greatly improved plugging ability and excellent performance in other aspects.


2020 ◽  
Vol 38 (5) ◽  
pp. 1515-1534
Author(s):  
Lei Zhang ◽  
Xiaoming Wu ◽  
Shuaifeng Lyu ◽  
Penglei Shen ◽  
Lulu Liu ◽  
...  

Coal powders, as cuttings, invade the drilling fluid along a coal seam during coalbed methane development, thereby changing the properties of the drilling fluid. Therefore, this work aims to investigate the influence of coal powders on drilling fluid performance. The powders of lignite, anthracite, and contrasting shale were added to a water-based polymer drilling fluid. Then, the rheology, filtration, lubricity, and adhesiveness were measured, and the natural degradation, as well as the wettability were further evaluated. The results show that some parameters of the drilling fluid, including viscosity, lubrication coefficient, adhesion coefficient, contact angle, and surface tension, increase after adding coal powders, while other parameters, such as filtration loss and natural degradation, decrease. Compared with lignite and shale, anthracite powders, with the lowest mineral content, exhibit the smallest change in the rheological property, lubricity, adhesion, and natural degradation of the drilling fluid. Moreover, the content and size of the coal powders generally have opposing effects on the drilling fluid. When the coal powder content reaches 3 wt.%, the surface tension and contact angle of the drilling fluid show more evident changes than other parameters. Based on the analysis of the stress intensity factor, the drilling fluid with coal powders exceeding 100 mesh can reduce the capillary force in microfractures, and in combination with other factors (such as reduced filtration loss and sealing and supporting of the microfractures), improves wellbore stability. Therefore, coal powders with suitable particle sizes and concentration levels are expected to become a new drilling fluid material to protect coal field reservoirs.


2010 ◽  
Vol 50 (2) ◽  
pp. 719
Author(s):  
Nathan Rayner ◽  
Ross Hendrie ◽  
Michael Bowe

An assessment framework for selecting optimal drilling and completion, forecasting and operating procedures in low permeability coals. Themes covered: low permeability coal drilling and production alternatives; production forecasting and operating procedures; and, economics and technical feasibilty. Arrow Energy Limited has been exploring for and producing from moderate to low permeability coals for over eight years, both in Australia and internationally. Arrow has developed a systematic approach to assessing the optimal drilling and completion, forecasting and operating procedures to evaluate the best appraisal and development options. Following the confirmation that the coal resource is of low permeability (less than 5mD) the selection of the drilling and completion strategies is inter-linked with the expected production and operating procedures. This paper summarises the approach taken by each of these discipline areas and maps out the key alternatives, data requirements and selection criteria used to recommend a production pilot in a low permeability environment. The first stage of the assessment is to review the drilling alternatives. This includes consideration of horizontal versus deviated or vertical wells, wellbore stability and solids production conditions, stimulation requirements and the production string, including artificial lift. Production forecasting is conducted with due regard to the technical alternatives screened as part of the drilling assessment. The quality of the forecast will be determined by the available data and the use of the appropriate forecasting tools ranging from analogue assessments, simple single well modelling through to 3D reservoir modelling. Finally, the production procedures appropriate for the well will be selected based on the well configuration and forecast deliverability as well as regional geology and geomechanics. This framework ensures that a consistent methodology is applied for selecting well type and operations that maximises the flow potential from our low permeability coals while ensuring due consideration to economics and technical feasibility.


1996 ◽  
Vol 36 (1) ◽  
pp. 544
Author(s):  
M.A. Addis ◽  
R.G. Jeffrey

Slimhole drilling is becoming an attractive option as it provides significant cost savings in the petroleum industry. Furthermore, many of the technical obstacles in adapting slimhole drilling for the petroleum industry have been addressed, such as rig modifications, small volume kick detection, drilling fluid design, etc. However, wellbore stability in slimholes is largely taken for granted, when it could potentially increase costs dramatically. In this paper, a review of the available information on the effects of hole size on hole stability is presented. Wellbore stability in holes of different diameters is discussed qualitatively based on published laboratory data and unpublished field data. The quantitative assessment of wellbore instability in slimholes is addressed using observations of instability in a well in which the far field stresses were measured.The field data presented here suggest that slimhole wells are not more stable than conventional wells. The slimhole drilled in NSW shows that even using the most conservative prediction model, wellbore instability would not be predicted—instability was however, observed.


2021 ◽  
Author(s):  
Alexander Viktorovich Kabanov ◽  
Aydar Ramilevich Galimkhanov ◽  
Andrey Borisovich Kharitonov ◽  
Alexander Mikhailovich Matsera ◽  
Valery Viktorovich Pogurets ◽  
...  

Abstract This article is a description of an integrated engineering approach to solutions selection for efficient and safe drilling of unstable intervals represented by interbedded coal and argillite layers. Due to specific features of these formations, any significant mechanical stress, as well as penetration of drilling fluid filtrate, may lead to wellbore instability regardless of the drilling mud type used. The paper presents a description of the features of drilling in unstable intervals with various types of drilling muds (WBM/OBM) in Yamalo-Nenets Autonomous Okrug (YNAO). Experience has shown that drilling through coal intervals prone to instability may cause significant non-productive time (NPT). Such wells should be designed with an integrated engineering approach, which covers the entire cycle: starting with the well path planning, casing setting depths selection, BHA design and drilling regimes of the risk interval. No less important, detailed development of solutions for drilling muds. During the study the main causes of issues in wells drilled through the interbedded formations of coal and argillites in two fields were identified. As a result, a set of measures was developed to minimize risks for each type of mud (OBM and WBM): – Revision of the initial well design solutions. Selection of optimal mud weight based on the experience gained and the geomechanical model – Revision of chemicals concentrations together with the use of additional additives – Placement of stabilizing pills across unstable intervals – Well path optimization – Development of safe drilling procedures. The measures developed for various types of drilling muds allowed minimizing the NPT and successfully completing the wells on time. The experience gained formed the basis for recommendations to prevent issues associated with the coal layers instability in the region.


Sign in / Sign up

Export Citation Format

Share Document