Integrated Automation and Data-Driven Workflow for CO2 Project Management – Case Study from a Smart Oil Field in the Middle-East

2021 ◽  
Author(s):  
Erismar Rubio ◽  
Mohamed Yousef Alklih ◽  
Nagaraju Reddicharla ◽  
Abobaker Albelazi ◽  
Melike Dilsiz ◽  
...  

Abstract Automation and data-driven models have been proven to yield commercial success in several oil fields worldwide with reported technical advantages related to improved reservoir management. This paper demonstrates the implementation of an integrated workflow to enhance CO2 injection project performance in a giant onshore smart oil field in Abu Dhabi. Since commissioning, proactive evaluation of the reservoir management strategy is enabled via smart-exception-based surveillance routines that facilitate reservoir/pattern/well performance review and supporting the decision making process. Prolonging the production sustainability of each well is a key pillar of this work, which has been made more quantifiable using live-tracking of the produced CO2 content and corrosion indicators. The intensive computing technical tasks and data aggregation from different sources; such as well testing and real time production/injection measurements; are integrated in an automatic workflow in a single platform. Accordingly, real-time visualizations and dashboards are also generated automatically; to orchestrate information, models and multidisciplinary knowledge in a systematic and efficient manner; allowing engineers to focus on problematic wells and giving attention to opportunity generation in a timely manner. Complemented with numerical techniques and other decision support tools, the intelligent system data-driven model assist to obtain a reliable short-term forecast in a shorter time and help making quick decisions on day-to-day operational optimization aspects. These dashboards have allowed measuring the true well/pattern performance towards operational objectives and production targets. A complete set of KPI's has helped to identify well health-status, potential risks and thus mitigate them for short/long term recovery to obtain an optimum reservoir energy balance in daily bases. In case of unexpected well performance behaviors, the dashboards have provided data insights on the root causes of different well issues and thus remedial actions were proposed accordingly. Maintaining CO2 miscibility is also ensured by having the right pressure support around producers, taking proactive actions from continues evaluation of producer-injector connectivity/interdependency, improving injection/production schedule, validating/tuning streamline model based on surveillance insights, avoiding CO2 recycling, optimizing data acquisition plan with potential cost saving while taking preventive measures to minimize well/facility corrosion impact. In this work, best reservoir management practices have been implemented to create a value of 12% incremental oil recovery from the field. The applied methodology uses an integrated automation and data-driven modeling approach to tackle CO2 injection project management challenges in real-time.

2021 ◽  
Author(s):  
Julieta Alvarez ◽  
Oswaldo Espinola ◽  
Luis Rodrigo Diaz ◽  
Lilith Cruces

Abstract Increase recovery from mature oil reservoirs requires the definition of enhanced reservoir management strategies, involving the implementation of advanced methodologies and technologies in the field's operation. This paper presents a digital workflow enabling the integration of commonly isolated elements such as: gauges, flowmeters, inflow control devices; analysis methods and data, used to improve scientific understanding of subsurface flow dynamics and determine improved operational decisions that support field's reservoir management strategy. It also supports evaluation of reservoir extent, hydraulic communication, artificial lift impact in the near-wellbore zone and reservoir response to injected fluids and coning phenomenon. This latest is used as an example to demonstrate the applicability of this workflow to improve and support operational decisions, minimizing water and gas production due to coning, that usually results in increasing production operation costs and it has a direct impact decreasing reservoir energy in mature saturated oil reservoirs. This innovative workflow consists on the continuous interpretation of data from downhole gauges, referred in this paper as data-driven; as well as analytical and numerical simulation methodologies using real-time raw data as an input, referred in this paper as model-driven, not commonly used to analyze near wellbore subsurface phenomena like coning and its impact in surface operation. The resulting analyses are displayed through an extensive visualization tool that provides instant insight to reservoir characterization and productivity groups, improving well and reservoir performance prediction capabilities for complex reservoirs such as mature saturated reservoirs with an associated aquifer, where undesired water and gas production is a continuous challenge that incorporates unexpected operational expenses.


2020 ◽  
Author(s):  
Khalid Javid ◽  
Guido Bascialla ◽  
Alvaro Sainz ◽  
Mohamed Hossni Ali ◽  
Srinivas Ettireddi ◽  
...  

2021 ◽  
Author(s):  
Cornelis Veeken

Abstract This paper presents a fit-for-purpose gas well performance model that utilizes a minimum set of inflow and outflow performance parameters, and demonstrates the use of this model to describe real-time well performance, to compare well performance over time and between wells, and to generate production forecasts in support of well interventions. The inflow and outflow parameters are directly related to well-known reservoir and well properties, and can be calibrated against common well surveillance and production data. By adopting this approach, engineers develop a better appreciation of the magnitude and uncertainty of gas well and reservoir performance parameters.


2021 ◽  
Vol 73 (10) ◽  
pp. 63-64
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 201696, “Robust Data-Driven Well-Performance Optimization Assisted by Machine-Learning Techniques for Natural-Flowing and Gas-Lift Wells in Abu Dhabi,” by Iman Al Selaiti, Carlos Mata, SPE, and Luigi Saputelli, SPE, ADNOC, et al., prepared for the 2020 SPE Annual Technical Conference and Exhibition, originally scheduled to be held in Denver, Colorado, 5–7 October. The paper has not been peer reviewed. Despite being proven to be a cost-effective surveillance initiative, remote monitoring is still not adopted in more than 60% of oil and gas fields around the world. Understanding the value of data through machine-learning (ML) techniques is the basis for establishing a robust surveillance strategy. In the complete paper, the authors develop a data-driven approach, enabled by artificial-intelligence methodologies including ML, to find an optimal operating envelope for gas-lift wells. Real-Time Well-Performance Optimization Wellsite Measurement and Control. - Flow Tests. - Past tests include sporadic measurement of multiphase rates and the associated flowing pressure and temperature, collected at various points of the production system, from bottomhole to separator conditions. Flow tests are also known as well tests; however, the authors use the term “flow test” in this paper to avoid confusion with well testing as used in pressure transient tests, including temporary shut-in pressure buildups (for producers) and pressure falloff tests (for injectors). Normally, a well would have limited data points from the past well tests (i.e., less than 50 valid flow tests in a period of 5–10 years). This data is the basis of creating ML models. Continuous Monitoring. - Every well should have adequate instrumentation, and its supporting infrastructure should include reliable power supply, minimum latency telemetry, and desktop access to production parameters. Alignment among real-time data and relational databases is required. Remote Control and Automated Actuation. - In addition to controllable valves, every well should be enabled with actuators to control the process variables. Remote control allows the operator to make changes to the current well-site configuration. Regulatory and Supervisory Control. - The value of automated closed-loop regulatory and supervisory control is to sustain optimal production while providing high well availability. Real-Time Production Optimization. - Continuous production optimization means that expected performance is challenged frequently by updating an optimal forecast with upper-level targets and current asset status. This is achieved by applying actions that close the gap between actual and expected performance. Faster surveillance loops compare actual vs. expected performance to determine minute, hourly, and daily gaps. A slower surveillance loop updates the asset’s expected performance. Well-Management Guidelines. - These are established, known limits to address and honor restrictions such as concession-contract obligations and legal limits, optimal reservoir management, flow assurance, economics, safety, and integrity.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4836
Author(s):  
Liping Zhang ◽  
Yifan Hu ◽  
Qiuhua Tang ◽  
Jie Li ◽  
Zhixiong Li

In modern manufacturing industry, the methods supporting real-time decision-making are the urgent requirement to response the uncertainty and complexity in intelligent production process. In this paper, a novel closed-loop scheduling framework is proposed to achieve real-time decision making by calling the appropriate data-driven dispatching rules at each rescheduling point. This framework contains four parts: offline training, online decision-making, data base and rules base. In the offline training part, the potential and appropriate dispatching rules with managers’ expectations are explored successfully by an improved gene expression program (IGEP) from the historical production data, not just the available or predictable information of the shop floor. In the online decision-making part, the intelligent shop floor will implement the scheduling scheme which is scheduled by the appropriate dispatching rules from rules base and store the production data into the data base. This approach is evaluated in a scenario of the intelligent job shop with random jobs arrival. Numerical experiments demonstrate that the proposed method outperformed the existing well-known single and combination dispatching rules or the discovered dispatching rules via metaheuristic algorithm in term of makespan, total flow time and tardiness.


Sign in / Sign up

Export Citation Format

Share Document