Geoscience Language Processing for Exploration

2021 ◽  
Author(s):  
Huseyin Denli ◽  
Hassan A Chughtai ◽  
Brian Hughes ◽  
Robert Gistri ◽  
Peng Xu

Abstract Deep learning has recently been providing step-change capabilities, particularly using transformer models, for natural language processing applications such as question answering, query-based summarization, and language translation for general-purpose context. We have developed a geoscience-specific language processing solution using such models to enable geoscientists to perform rapid, fully-quantitative and automated analysis of large corpuses of data and gain insights. One of the key transformer-based model is BERT (Bidirectional Encoder Representations from Transformers). It is trained with a large amount of general-purpose text (e.g., Common Crawl). Use of such a model for geoscience applications can face a number of challenges. One is due to the insignificant presence of geoscience-specific vocabulary in general-purpose context (e.g. daily language) and the other one is due to the geoscience jargon (domain-specific meaning of words). For example, salt is more likely to be associated with table salt within a daily language but it is used as a subsurface entity within geosciences. To elevate such challenges, we retrained a pre-trained BERT model with our 20M internal geoscientific records. We will refer the retrained model as GeoBERT. We fine-tuned the GeoBERT model for a number of tasks including geoscience question answering and query-based summarization. BERT models are very large in size. For example, BERT-Large has 340M trained parameters. Geoscience language processing with these models, including GeoBERT, could result in a substantial latency when all database is processed at every call of the model. To address this challenge, we developed a retriever-reader engine consisting of an embedding-based similarity search as a context retrieval step, which helps the solution to narrow the context for a given query before processing the context with GeoBERT. We built a solution integrating context-retrieval and GeoBERT models. Benchmarks show that it is effective to help geologists to identify answers and context for given questions. The prototype will also produce a summary to different granularity for a given set of documents. We have also demonstrated that domain-specific GeoBERT outperforms general-purpose BERT for geoscience applications.

2021 ◽  
Vol 27 (6) ◽  
pp. 763-778
Author(s):  
Kenneth Ward Church ◽  
Zeyu Chen ◽  
Yanjun Ma

AbstractThe previous Emerging Trends article (Church et al., 2021. Natural Language Engineering27(5), 631–645.) introduced deep nets to poets. Poets is an imperfect metaphor, intended as a gesture toward inclusion. The future for deep nets will benefit by reaching out to a broad audience of potential users, including people with little or no programming skills, and little interest in training models. That paper focused on inference, the use of pre-trained models, as is, without fine-tuning. The goal of this paper is to make fine-tuning more accessible to a broader audience. Since fine-tuning is more challenging than inference, the examples in this paper will require modest programming skills, as well as access to a GPU. Fine-tuning starts with a general purpose base (foundation) model and uses a small training set of labeled data to produce a model for a specific downstream application. There are many examples of fine-tuning in natural language processing (question answering (SQuAD) and GLUE benchmark), as well as vision and speech.


2002 ◽  
Vol 17 (1) ◽  
pp. 65-70 ◽  
Author(s):  
ADAM PEASE ◽  
IAN NILES

The IEEE Standard Upper Ontology (IEEE, 2001) is an effort to create a large, general-purpose, formal ontology. The ontology will be an open standard that can be reused for both academic and commercial purposes without fee, and it will be designed to support additional domain-specific ontologies. The effort is targeted for use in automated inference, semantic interoperability between heterogeneous information systems and natural language processing applications. The effort was begun in May 2000 with an e-mail discussion list, and since then there have been over 6000 e-mail messages among 170 subscribers. These subscribers include representatives from government, academia and industry in various countries. The effort was officially approved as an IEEE standards project in December 2000. Recently a successful workshop was held at IJCAI 2001 to discuss progress and proposals for this project (IJCAI, 2001).


Author(s):  
Valerie Cross ◽  
Vishal Bathija

AbstractOntologies are an emerging means of knowledge representation to improve information organization and management, and they are becoming more prevalent in the domain of engineering design. The task of creating new ontologies manually is not only tedious and cumbersome but also time consuming and expensive. Research aimed at addressing these problems in creating ontologies has investigated methods of automating ontology reuse mainly by extracting smaller application ontologies from larger, more general purpose ontologies. Motivated by the wide variety of existing learning algorithms, this paper describes a new approach focused on the reuse of domain-specific ontologies. The approach integrates existing software tools for natural language processing with new algorithms for pruning concepts not relevant to the new domain and extending the pruned ontology by adding relevant concepts. The approach is assessed experimentally by automatically adapting a design rationale ontology for the software engineering domain to a new one for the related domain of engineering design. The experiment produced an ontology that exhibits comparable quality to previous attempts to automate ontology creation as measured by standard content performance metrics such as coverage, accuracy, precision, and recall. However, further analysis of the ontology suggests that the automated approach should be augmented with recommendations presented to a domain expert who monitors the pruning and extending processes in order to improve the structure of the ontology.


2020 ◽  
Vol 38 (02) ◽  
Author(s):  
TẠ DUY CÔNG CHIẾN

Question answering systems are applied to many different fields in recent years, such as education, business, and surveys. The purpose of these systems is to answer automatically the questions or queries of users about some problems. This paper introduces a question answering system is built based on a domain specific ontology. This ontology, which contains the data and the vocabularies related to the computing domain are built from text documents of the ACM Digital Libraries. Consequently, the system only answers the problems pertaining to the information technology domains such as database, network, machine learning, etc. We use the methodologies of Natural Language Processing and domain ontology to build this system. In order to increase performance, I use a graph database to store the computing ontology and apply no-SQL database for querying data of computing ontology.


2012 ◽  
Vol 18 (2) ◽  
pp. 235-262 ◽  
Author(s):  
QUANG XUAN DO ◽  
DAN ROTH

AbstractDetermining whether two terms have an ancestor relation (e.g. Toyota Camry and car) or a sibling relation (e.g. Toyota and Honda) is an essential component of textual inference in Natural Language Processing applications such as Question Answering, Summarization, and Textual Entailment. Significant work has been done on developing knowledge sources that could support these tasks, but these resources usually suffer from low coverage, noise, and are inflexible when dealing with ambiguous and general terms that may not appear in any stationary resource, making their use as general purpose background knowledge resources difficult. In this paper, rather than building a hierarchical structure of concepts and relations, we describe an algorithmic approach that, given two terms, determines the taxonomic relation between them using a machine learning-based approach that makes use of existing resources. Moreover, we develop a global constraint-based inference process that leverages an existing knowledge base to enforce relational constraints among terms and thus improves the classifier predictions. Our experimental evaluation shows that our approach significantly outperforms other systems built upon the existing well-known knowledge sources.


2020 ◽  
Vol 34 (05) ◽  
pp. 9370-9377
Author(s):  
Zihan Xu ◽  
Hai-Tao Zheng ◽  
Shaopeng Zhai ◽  
Dong Wang

Semantic matching is a basic problem in natural language processing, but it is far from solved because of the differences between the pairs for matching. In question answering (QA), answer selection (AS) is a popular semantic matching task, usually reformulated as a paraphrase identification (PI) problem. However, QA is different from PI because the question and the answer are not synonymous sentences and not strictly comparable. In this work, a novel knowledge and cross-pair pattern guided semantic matching system (KCG) is proposed, which considers both knowledge and pattern conditions for QA. We apply explicit cross-pair matching based on Graph Convolutional Network (GCN) to help KCG recognize general domain-independent Q-to-A patterns better. And with the incorporation of domain-specific information from knowledge bases (KB), KCG is able to capture and explore various relations within Q-A pairs. Experiments show that KCG is robust against the diversity of Q-A pairs and outperforms the state-of-the-art systems on different answer selection tasks.


2020 ◽  
Author(s):  
Vladislav Mikhailov ◽  
Tatiana Shavrina

Named Entity Recognition (NER) is a fundamental task in the fields of natural language processing and information extraction. NER has been widely used as a standalone tool or an essential component in a variety of applications such as question answering, dialogue assistants and knowledge graphs development. However, training reliable NER models requires a large amount of labelled data which is expensive to obtain, particularly in specialized domains. This paper describes a method to learn a domain-specific NER model for an arbitrary set of named entities when domain-specific supervision is not available. We assume that the supervision can be obtained with no human effort, and neural models can learn from each other. The code, data and models are publicly available.


Author(s):  
Nicolás José Fernández-Martínez ◽  
Carlos Periñán-Pascual

Location-based systems require rich geospatial data in emergency and crisis-related situations (e.g. earthquakes, floods, terrorist attacks, car accidents or pandemics) for the geolocation of not only a given incident but also the affected places and people in need of immediate help, which could potentially save lives and prevent further damage to urban or environmental areas. Given the sparsity of geotagged tweets, geospatial data must be obtained from the locative references mentioned in textual data such as tweets. In this context, we introduce nLORE (neural LOcative Reference Extractor), a deep-learning system that serves to detect locative references in English tweets by making use of the linguistic knowledge provided by LORE. nLORE, which captures fine-grained complex locative references of any type, outperforms not only LORE, but also well-known general-purpose or domain-specific off-the-shelf entity-recognizer systems, both qualitatively and quantitatively. However, LORE shows much better runtime efficiency, which is especially important in emergency-based and crisis-related scenarios that demand quick intervention to send first responders to affected areas and people. This highlights the often undervalued yet very important role of rule-based models in natural language processing for real-life and real-time scenarios.


AI Magazine ◽  
2019 ◽  
Vol 40 (3) ◽  
pp. 67-78
Author(s):  
Guy Barash ◽  
Mauricio Castillo-Effen ◽  
Niyati Chhaya ◽  
Peter Clark ◽  
Huáscar Espinoza ◽  
...  

The workshop program of the Association for the Advancement of Artificial Intelligence’s 33rd Conference on Artificial Intelligence (AAAI-19) was held in Honolulu, Hawaii, on Sunday and Monday, January 27–28, 2019. There were fifteen workshops in the program: Affective Content Analysis: Modeling Affect-in-Action, Agile Robotics for Industrial Automation Competition, Artificial Intelligence for Cyber Security, Artificial Intelligence Safety, Dialog System Technology Challenge, Engineering Dependable and Secure Machine Learning Systems, Games and Simulations for Artificial Intelligence, Health Intelligence, Knowledge Extraction from Games, Network Interpretability for Deep Learning, Plan, Activity, and Intent Recognition, Reasoning and Learning for Human-Machine Dialogues, Reasoning for Complex Question Answering, Recommender Systems Meet Natural Language Processing, Reinforcement Learning in Games, and Reproducible AI. This report contains brief summaries of the all the workshops that were held.


Sign in / Sign up

Export Citation Format

Share Document