Improved Simulation Efficiency for Optimising Inflow Control Device Completions Using Suitably Upscaled Models and Parallel Global Search Optimisation Techniques

2021 ◽  
Author(s):  
Abdurrezagh Awid ◽  
Chengjun Guo ◽  
Sebastian Geiger

Abstract Inflow Control Device (ICD) completions can improve well performance by adjusting the inflow profile along the well and reducing the influx of unwanted fluids. The ultimate aim of using ICD completions is to provide maximum oil recovery and/or Net Present Value (NPV) over the life of the field. Proactive ICD optimisation studies use complex reservoir models and high-dimensional nonlinear objective functions to find the optimum ICD configurations over the life of the field. These complex models are generated from fine scale detailed geological models to accurately capture fluid flow behaviour in the reservoir. Although these high-resolution geological models can provide better performance predictions, their simulation runtimes can be computationally expensive and time consuming for performing proactive ICD optimisation studies that often require thousands of simulation runs. We propose a new workflow where we use upscaled and locally refined models coupled with parallelised global search optimisation techniques to improve the simulation efficiency when performing ICD optimisation and decision-making studies. Our approach preserves the flow behaviour in the reservoir and maintains the interaction between the reservoir and the well in the near wellbore region. Moreover, when coupled with parallel optimisation techniques, the simulation time is significantly reduced. We present an in-house code that couples global search optimisation algorithms (Genetic Algorithm and Surrogate Algorithm) with a commercial reservoir simulator to drive the ICD configurations. We evaluate the NPV as the objective function to determine the optimum ICD configurations. We apply and benchmark our approach to two different reservoir models to compare and analyse its efficiency and the optimisation results. Our analysis shows that our proposed approach reduces the run time by more than 80% when using the upscaled models and the parallel optimisation techniques. These results were based on a standard dual-core parallel desktop configuration. Additional results also showed further reduction in run time is possible when employing more processors. Additionally, when testing different ICD completion strategies (ICDs in producers only, ICDs in injectors only, and ICDs in both producers and injectors), the NPV can be increased by 9.6% for the optimised ICD completions. The novelty of our work is rooted in the much-improved simulation efficiency and better performance predictions that supports ICD optimisation and decision-making studies during field development planning to maximize profit and minimize risk over the life of the field.

2021 ◽  
Author(s):  
Zhihua Wang ◽  
Daniel Newton ◽  
Aqib Qureshi ◽  
Yoshito Uchiyama ◽  
Georgina Corona ◽  
...  

Abstract This Extended Reach Drilling (ERD) field re-development of a giant offshore field in the United Arab Emirates (UAE) requires in most cases extremely long laterals to reach the defined reservoir targets. However, certain areas of the field show permeability and / or pressure variations along the horizontal laterals. This heterogeneity requires an inflow control device (ICD) lower completion liner to deliver the required well performance that will adequately produce and sweep the reservoir. The ICD lower completion along with the extremely long laterals means significant time is spent switching the well from reservoir drilling fluid (RDF) non-aqueous fluid (NAF) to an aqueous completion brine. To reduce the amount of rig time spent on the displacement portion of the completion phase, an innovative technology was developed to enable the ICDs to be run in hole in a closed position and enable circulating through the end of the liner. The technology uses a dissolvable material, which is installed in the ICD to temporarily plug it. The dissolvable material is inert to the RDF NAF while the ICDs are run into hole, and then dissolves in brine after the well is displaced from RDF NAF to completion brine, changing the ICDs from closed to an open position. The ability to circulate through the end of the liner, with the support of the plugged ICDs, when the lower completion is deployed and at total depth (TD), enables switching the well from RDF NAF drilling fluid to an aqueous completion brine without the associated rig time of the original displacement method. The technique eliminates the use of a dedicated inner displacement string and allows for the displacement to be performed with the liner running string, saving 4-5 days per well. An added bonus is that the unique design allowed for this feature to be retrofitted to existing standard ICDs providing improved inventory control. In this paper the authors will demonstrate the technology and system developed to perform this operation, as well as the qualification testing, field installations, and lessons learned that were required to take this solution from concept to successful performance improvement initiative.


Author(s):  
Рустэм Адипович Исмаков ◽  
Екатерина Всеволодовна Денисова ◽  
Марина Алексеевна Черникова ◽  
Сергей Павлович Сидоров

Актуальность исследования состоит в том, что решением преждевременного прорыва воды или газа в горизонтальной скважине из-за неоднородности профилей притока вдоль оси горизонтального ствола, является изменение пластового давления на различных участках, а также при разработке контактных месторождений, особенно по мере истощения залежи, могут служить устройства контроля притока флюида. Различают активные Interval Control Valve (ICV) или пассивные Inflow Control Device (ICD) устройства. Устройства ICD способны выровнять приток вдоль горизонтальной скважины за счет создания дополнительного сопротивления потоку жидкости, зависящего от величины притока на данном горизонтальном участке. Недостаток современных ICD в том, что они не имеют возможности регулирования и приведения пассивных устройств в действие после установки в стволе скважины. В связи с тем, что имеются риски связанные с неопределенностью в описании свойств пласта, которые присутствуют на всех стадиях разработки месторождения недостаток ICD оказывается существенным. Системы ICV приводятся в действие дистанционно с поверхности скважины, но не способны определять характер поступающего флюида (нефть, газ, вода) в скважину и принимать решение в автоматическом режиме. Цель: разработка новой конструктивной схемы устройства контроля притоком с возможностью непрерывного мониторинга характера поступающей жидкости, и программного обеспечения для управления клапаном с устья скважины. Объекты: горизонтальная скважина и устройство контроля притоком флюида. Методы: имитационное моделирование Simulink, нейронные сети, матричные методы, методы линеаризации нелинейных уравнений. Результаты. Предложена новая конструктивная схема устройства контроля притока в горизонтальной скважине, позволяющая непрерывно оценивать характер поступающего флюида. Данная конструкция позволяет в автоматическом режиме регулировать положение исполнительного механизма по данным измерительных приборов. Дано математическое описание работы клапана. Разработана модель клапана в среде моделирования Simulink, с использованием матричного подхода и нейронных сетей, для построения качественной зависимости положения клапана от значения создаваемого перепада давления. Приведены результаты работы блока нейронной сети и конечный результат моделирования.


2016 ◽  
Author(s):  
Mohammed A. Al Madan ◽  
Mazen Bu Khamseen ◽  
Hedy Suherdiana ◽  
Ahmad Al Abdulmohsen

2021 ◽  
Author(s):  
Florian Wellmann ◽  
Miguel de la Varga ◽  
Nilgün Güdük ◽  
Jan von Harten ◽  
Fabian Stamm ◽  
...  

<p>Geological models, as 3-D representations of subsurface structures and property distributions, are used in many economic, scientific, and societal decision processes. These models are built on prior assumptions and imperfect information, and they often result from an integration of geological and geophysical data types with varying quality. These aspects result in uncertainties about the predicted subsurface structures and property distributions, which will affect the subsequent decision process.</p><p>We discuss approaches to evaluate uncertainties in geological models and to integrate geological and geophysical information in combined workflows. A first step is the consideration of uncertainties in prior model parameters on the basis of uncertainty propagation (forward uncertainty quantification). When applied to structural geological models with discrete classes, these methods result in a class probability for each point in space, often represented in tessellated grid cells. These results can then be visualized or forwarded to process simulations. Another option is to add risk functions for subsequent decision analyses. In recent work, these geological uncertainty fields have also been used as an input to subsequent geophysical inversions.</p><p>A logical extension to these existing approaches is the integration of geological forward operators into inverse frameworks, to enable a full flow of inference for a wider range of relevant parameters. We investigate here specifically the use of probabilistic machine learning tools in combination with geological and geophysical modeling. Challenges exist due to the hierarchical nature of the probabilistic models, but modern sampling strategies allow for efficient sampling in these complex settings. We showcase the application with examples combining geological modeling and geophysical potential field measurements in an integrated model for improved decision making.</p>


2021 ◽  
pp. 1-12
Author(s):  
Ashutosh Dikshit ◽  
Vivek Agnihotri ◽  
Mike Plooy ◽  
Amrendra Kumar ◽  
Seymur Gurbanov ◽  
...  

Summary Integrating a flow control sliding sleeve into a sand screen can provide multiple advantages to the user in controlling the production inflow, but it comes with an increased completion cost as well as an increase in the number of interventions required when it is time to operate those valves. Especially in long horizontal wells, this can become time-consuming and inefficient. A few technologies exist to address this issue, but they either are too complex or require specialized rigging equipment at the wellsite, which is not desirable. As described herein, a unique, fit-for-application modular sliding sleeve sand screen assembly with dissolvable plugs was developed that eliminates the need for washpipe during run-in-hole (RIH) and allows flow control from several screens by means of a single sliding sleeve door (SSD), thereby also optimizing the subsequent intervention operations by reducing the number of SSDs in the well. The design and field installation of these modular screens is presented in this paper. The new modular sand screen consisted of an upper joint, modular middle joint, modular middle joint with an inflow control device (ICD) integrated into an SSD (with optional dissolvable plugs), a lower joint, and novel field-installable flow couplings between them. The design allows for any number of non-ICD/SSD screen joints to be connected to any number of ICD/SSD joints in any order. A computer-aided design was followed to achieve all the operational and mechanical requirements. Computational fluid dynamics (CFD) was used to optimize the flow performance characteristics. Prototypes were manufactured and tested before conducting successful field trials. The design process, development, and field installation results are presented herein.


Sign in / Sign up

Export Citation Format

Share Document