Novel Active Inflow Control Technology for Optimized Flow and Reduced Intervention

2021 ◽  
pp. 1-12
Author(s):  
Ashutosh Dikshit ◽  
Vivek Agnihotri ◽  
Mike Plooy ◽  
Amrendra Kumar ◽  
Seymur Gurbanov ◽  
...  

Summary Integrating a flow control sliding sleeve into a sand screen can provide multiple advantages to the user in controlling the production inflow, but it comes with an increased completion cost as well as an increase in the number of interventions required when it is time to operate those valves. Especially in long horizontal wells, this can become time-consuming and inefficient. A few technologies exist to address this issue, but they either are too complex or require specialized rigging equipment at the wellsite, which is not desirable. As described herein, a unique, fit-for-application modular sliding sleeve sand screen assembly with dissolvable plugs was developed that eliminates the need for washpipe during run-in-hole (RIH) and allows flow control from several screens by means of a single sliding sleeve door (SSD), thereby also optimizing the subsequent intervention operations by reducing the number of SSDs in the well. The design and field installation of these modular screens is presented in this paper. The new modular sand screen consisted of an upper joint, modular middle joint, modular middle joint with an inflow control device (ICD) integrated into an SSD (with optional dissolvable plugs), a lower joint, and novel field-installable flow couplings between them. The design allows for any number of non-ICD/SSD screen joints to be connected to any number of ICD/SSD joints in any order. A computer-aided design was followed to achieve all the operational and mechanical requirements. Computational fluid dynamics (CFD) was used to optimize the flow performance characteristics. Prototypes were manufactured and tested before conducting successful field trials. The design process, development, and field installation results are presented herein.

Author(s):  
Lei Li ◽  
Carlos F Lange ◽  
Yongsheng Ma

Computational fluid dynamics has been extensively used for fluid flow simulation and thus guiding the flow control device design. However, computational fluid dynamics simulation requires explicit geometry input and complicated solver setup, which is a barrier in case of the cyclic computer-aided design/computational fluid dynamics integrated design process. Tedious human interventions are inevitable to make up the gap. To fix this issue, this work proposed a theoretical framework where the computational fluid dynamics solver setup can be intelligently assisted by the simulation intent capture. Two feature concepts, the fluid physics feature and the dynamic physics feature, have been defined to support the simulation intent capture. A prototype has been developed for the computer-aided design/computational fluid dynamics integrated design implementation without the need of human intervention, where the design intent and computational fluid dynamics simulation intent are associated seamlessly. An outflow control device used in the steam-assisted gravity drainage process is studied using this prototype, and the target performance of the device is effectively optimized.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 535
Author(s):  
Cătălin Alexandru

The article deals with the optimization of the azimuthal tracking mechanism for a photovoltaic (PV) platform, which uses linear actuators as actuation elements for both movements (diurnal and elevation). In the case of diurnal movement, where the platform’s angular field of orientation is large, a mechanism with a relatively simple structure is used for amplifying the actuator’s stroke and avoiding the risk of the system locking itself (by limiting the values of the transmission angle). The optimization study targets the mechanical device, the control device, and the bi-axial tracking program (embodied by the laws of motion in time for the platform’s diurnal and elevation angles) with the purpose of obtaining a high input of solar radiation, with a minimal energy consumption to achieve tracking. The study is carried out by using a virtual prototyping platform, which includes Computer Aided Design (CAD), Multi-Body Systems (MBS), and Design for Control (DFC) computer applications. The mechanical and control devices of the solar tracker are integrated and tested in mechatronic concept. The simulations’ results, which were performed for a set of representative days throughout the year, prove the effectiveness of the proposed design.


2019 ◽  
Vol 161 (A1) ◽  

Herein, we present an integrated ship re-design/modification strategy that integrates the ‘Computer-Aided Design (CAD)’ and ‘Computational Fluid Dynamics (CFD)’ to modify the ship hull form for better performance in resistance. We assume a modular design and the ship hull form modification focuses on the forward module (e.g. bulbous bow) and aft module (e.g. stern bulb) only. The ship hull form CAD model is implemented with NAPA*TM and CFD model is implemented with Shipflow**TM. The basic ship hull form parameters are not changed and the modifications in some of the technical parameters because of re-designed bulbous bow and stern bulb are kept at very minimum. The bulbous bow is re-designed by extending an earlier method (Sharma and Sha (2005b)) and stern bulb parameters for re-design are computed from the experience gained from literature survey. The re-designed hull form is modeled in CAD and is integrated and analyzed with Shipflow**TM. The CAD and CFD integrated model is validated and verified with the ITTC approved recommendations and guidelines. The proposed numerical methodology is implemented on the ship hull form modification of a benchmark ship, i.e. KRISO container ship (KCS). The presented results show that the modified ship hull form of KCS - with only bow and stern modifications - using the present strategy, results into resistance and propulsive improvement.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Limin Zhu ◽  
Xiaolei Gong ◽  
Jinlong Liu ◽  
Youjin Li ◽  
Yumin Zhong ◽  
...  

Multisegmental complex congenital tracheal stenosis (CTS) is an uncommon but potentially life-threatening malformation of the airway. Staged surgery is indicated for the complex pathophysiology of the abnormal trachea. Surgical intervention to fix the stenotic segments may result in different postoperative outcomes. However, only few studies reported the design of surgical correction for multisegmental CTS. We used computer-aided design (CAD) to simulate surgical correction under different schemes to develop a patient-specific tracheal model with two segmental stenoses. Computational fluid dynamics (CFD) was used to compare the outcomes of different designs. Aerodynamic parameters of the trachea were evaluated. An obvious interaction was found between the two segments of stenosis in different surgical designs. The surgical corrective order of stenotic segments greatly affected the aerodynamic parameters and turbulence flows downstream of tracheal stenosis and upstream of the bronchus. Patient-specific studies using CAD and CFD minimize the risk of staged surgical correction and facilitate quantitative evaluation of surgical design for multiple segments of complex CTS.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5090 ◽  
Author(s):  
Jennifer García ◽  
Ismael Ríos ◽  
Faruk Fonthal Rico

In this paper, we introduce a novel type of transdermal drug delivery device (TD3) with a micro-electro-mechanical system (MEMS) design using computer-aided design (CAD) techniques as well as computational fluid dynamics (CFD) simulations regarding the fluid interaction inside the device during the actuation process. For the actuation principles of the chamber and microvalve, both thermopneumatic and piezoelectric principles are employed respectively, originating that the design perfectly integrates those principles through two different components, such as a micropump with integrated microvalves and a microneedle array. The TD3 has shown to be capable of delivering a volumetric flow of 2.92 × 10−5 cm3/s with a 6.6 Hz membrane stroke frequency. The device only needs 116 Pa to complete the suction process and 2560 Pa to complete the discharge process. A 38-microneedle array with 450 µm in length fulfills the function of permeating skin, allowing that the fluid reaches the desired destination and avoiding any possible pain during the insertion.


Author(s):  
Xu Zhang ◽  
David J. J. Toal ◽  
Neil W. Bressloff ◽  
Andy J. Keane ◽  
Frederic Witham ◽  
...  

The following paper presents an overview of the Prometheus design system and its applications to gas turbine combustor design. Unlike a traditional “optimizer-centric” method, Prometheus aims to reduce both the level of workflow complexity and rework by taking a more “geometry-centric” approach to design optimization by shifting the control of script generation away from the optimization program to the computer aided design (CAD) package. Prometheus therefore enables significant geometry changes to be automatically reflected in all subsequent scripts necessary for the analysis of a combustor. Prometheus’ current capabilities include automatic fluid volume generation and aero-thermal and thermo-acoustic network generation as well as automatic mesh and computational fluid dynamics (CFD) script generation.


2006 ◽  
Vol 128 (04) ◽  
pp. 36-38
Author(s):  
Jean Thilmany

This paper analyzes research work on developing techniques to study complex fluids. Although several computational fluid dynamics (CFD) vendors now sell desktop software that mechanical engineers can buy to model complex flows, many problems are still simply too hard for those applications. According to engineers, CFD programs for these complex problems can take years to write, even with the supercomputer's aid. Moreover, some flows may never be modeled: they are just too complex for even the most advanced software. Behr and a colleague, Matteo Pasquali, an Associate Professor in the Department of Chemical and Biomolecular Engineering at Rice University, are now at work writing a CFD application that will help a heart-pump manufacturer analyze how blood would move through different configurations of the pump. Pasquali and Behr spent two years trying to turn the pump geometry and performance data Baylor provided into usable data. They converted the pump's computer-aided design information and input it into their homegrown CFD program, then came up with software tools to rotate one part of the computationally meshed pump element with respect to another.


2021 ◽  
Author(s):  
Valeria Erives ◽  
Mike Plooy ◽  
Vivek Agnihotri ◽  
Ashutosh Dikshit ◽  
Amrendra Kumar ◽  
...  

Abstract Integrating a flow control sliding sleeve into a sand screen can provide multiple advantages to the user in controlling the production inflow. Although it does come with an increased completion cost as well as the number of interventions required when its time to operate those valves. Especially in long horizontal wells, this can become time consuming and inefficient. A few technologies exist to address this issue but they are either too complex or require specialized rigging equipment at the wellsite, which is not desirable. As described herein, a unique, fit for application modular sliding sleeve sand screen assembly with dissolvable plugs was developed that eliminates wash-pipe and allows flow from several screens controlled via a single sliding sleeve. Design and field installation of these modular screens is presented in this paper. The new modular sand-screen consisted of an upper joint, modular middle joint, modular middle joint with ICD/SSD (w/ optional dissolvable plugs), and a lower joint, and novel field installable flow couplings between them. The design allowed for any number of non-ICD/SSD screen joints to be connected to any number of ICD/SSD joints in any order. A computer-aided design was followed to achieve all the operational/mechanical requirements, Computational fluid dynamics (CFD) was used to optimize the flow performance characteristics. Prototypes were manufactured and tested prior to conducting successful field trials. The conceptualization and design stage provided several challenges as different ways to achieving modularity and interconnectivity were explored (such as internal to the tubing or external, sealing methods, ease of installation, reliability). Several design calculations were performed to select the most robust design and most suitable solution for the application. Design for manufacturing review, design calculations and CFD analysis helped with the selection of a concept that maximized the flow rates and kept flow velocity under the limit through the critical sections. Dissolvable plugs were used to temporarily close the SSD ports for wash-pipe free installation. The sealing mechanism of plugs was confirmed by differential pressure test up to 500 psi. A valuable, new downhole modular screen design for use w/ICD/SSD providing intervention-less completions without involving complex/expensive technologies is developed, tested and installed. A new, field-proven, modular sand control technology allowing flow from several non-ICD/SSD screen joints to drain into a single ICD/SSD joint, thus eliminating the need to run ICD/SSD on every screen joint in an unconsolidated formation is developed. Dissolvable plug integrated into sliding sleeve ports allowed wash pipe free installation. The technology allows increasing/decreasing the total drainage length at the well site per zonal requirements, thereby reducing costs and improving performance.


Sign in / Sign up

Export Citation Format

Share Document