Experimental and Theoretical Studies on the Fluid Properties Required for Simulation of Thermal Processes

1981 ◽  
Vol 21 (05) ◽  
pp. 535-550 ◽  
Author(s):  
S.T. Lee ◽  
R.H. Jacoby ◽  
W.H. Chen ◽  
W.E. Culham

Abstract Experimental phase equilibrium data are presented for three reservoir oils at conditions approximating those encountered in in-situ thermal recovery processes. The fluid systems involved consist of three major groups of components: flue gas, water, and crude oil. Data were measured at temperatures from 204.4 to 371.1°C (400 to 700°F) and pressures from 6996.0 to 20785.6 kPa (1,000 to 3,000 psia). Experimental phase equilibrium data were used to develop a correlation of binary interaction coefficients of crude-oil fractions required for the Peng-Robinson equation of state. Phase equilibrium data predicted using the Peng-Robinson equation of state, using our interaction coefficients, are compared with experimental data. Generally, the Peng-Robinson equation of state predictions were in close agreement with the experimental data. Effect of feed gas/oil ratio and water/oil ratio on the equilibrium coefficients was examined through the Peng-Robinson equation of state. A study on the feasibility of representing the crude oil by only two fractions was made also. This study includes a procedure for lumping the crude-oil fractions and examples showing the importance of mixing rules in determining the pseudo critical properties of lumped fractions. Introduction The steady growth of commercial thermal recovery processes1 has created a need for basic data on phase equilibria that involve water and hydrocarbons ranging from methane to high boiling-point fractions. The in-situ thermal recovery processes often are operated at pressures above 6800 kPa (1,000 psia) and temperatures above 200°C (400°F). Experimental data and theoretical correlations on phase equilibria approximating these systems are virtually nonexistent. Early work by White and Brown2 dealt with high boiling-point hydrocarbon phase equilibria. However, the highest pressure studied was 6894.8 kPa (1,000 psia) and the lightest component was pentane. Poettmann and Mayland,3 on the basis of an empirical correlation,4 constructed charts of equilibrium coefficients, or K values, as functions of pressure and temperature for various boiling-point fractions. But the maximum pressure studied was 6894.8 kPa (1,000 psia). Later, Hoffmann et al.5 studied phase behavior of a gas-condensate system with the highest pressure reaching 20 684.3 kPa (3,000 psia) but the highest temperature investigated was only 94.2°C (201°F). In 1963, Grayson and Streed6 reported experimental vapor/liquid equilibrium data for high-temperature and high-pressure hydrocarbon systems. They also extended the Chao-Seader correlation to cover the higher temperature ranges. However, the. major light component in Grayson and Streed's system was hydrogen. Recently, because of the increasing activity in carbon dioxide flooding processes, the phase equilibria of systems involving carbon dioxide and crude oil has received attention. Simon et al.7 studied phase behavior and other properties of carbon-dioxide/reservoir-oil systems. Shelton and Yarborough8 examined phase behavior in porous media during carbon dioxide or rich-gas flooding. No extensive data on equilibrium coefficients were reported in those papers, and the temperature ranges (out of physical reality) were below 93.5°C (200°F). None of these papers surveyed included water as a component.

2020 ◽  
Vol 10 (8) ◽  
pp. 3689-3709
Author(s):  
Shadman H. Khan ◽  
Anupama Kumari ◽  
G. Dixit ◽  
Chandrajit B. Majumder ◽  
Amit Arora

Abstract The present work focuses on developing a framework for accurate prediction of thermodynamic conditions for single-component hydrates, namely CH4, CO2, N2, H2S, and C2H6 (coded in MATLAB). For this purpose, an exhaustive approach is adopted by incorporating eight different equations of states, namely Peng–Robinson, van der Waals, Soave–Redlich–Kwong, Virial, Redlich–Kwong, Tsai-Teja, Patel, and Esmaeilzadeh–Roshanfekr, with the well-known van der Waals–Platteeuw model. Overall, for I–H–V phase region, the Virial and van der Waals equation of state gives the most accurate predictions with minimum AAD%. For Lw–H–V phase region, Peng–Robinson equation of state is found to yield the most accurate predictions with overall AAD of 3.36%. Also, genetic programming algorithm is adopted to develop a generalized correlation. Overall, the correlation yields quick estimation with an average deviation of less than 1%. The accurate estimation yields a minimal AAD of 0.32% for CH4, 1.93% for C2H6, 0.77% for CO2, 0.64% for H2S, and 0.72% for N2. The same correlation can be employed for fitting phase equilibrium data for other hydrates too. The tuning parameter, n, is to be used for fine adjustment to the phase equilibrium data. The findings of this study can help for a better understanding of phase equilibrium and cage occupancy behavior of different gas hydrates. The accuracy in phase equilibria is intimately related to industrial applications such as crude oil transportation, solid separation, and gas storage. To date, no single correlation is available in the literature that can accurately predict phase equilibria for multiple hydrate species. The novelty of the present work lies in both the accuracy and generalizability of the proposed correlation in predicting the phase equilibrium data. The genetic programming generalized correlation is convenient for performing quick equilibrium prediction for industrial applications.


2021 ◽  
Vol 19 (1) ◽  
pp. 75-85
Author(s):  
Jing Bai ◽  
Canwei Cheng ◽  
Yuanxia Wei ◽  
Kele Yan ◽  
Pan Li ◽  
...  

Abstract CO2 hydrate-based desalination (CHBD) has been developing for decades to meet the global demands of decreasing carbon dioxide (CO2) emissions. In this work, the CO2 was captured from the simulated flue gas which consists of 18.30 mol% carbon dioxide and 81.70 mol% nitrogen in the presence of tetra-n-butyl ammonium bromide (TBAB) + cyclopentane (CP) + glucoamylase. Then the phase equilibrium data of CO2 hydrate were measured by the method of isochoric pressure-search. Among the seven cases with same concentration of TBAB (0.29 mol%) and CP (5.00 vol%) and different glucoamylase proportions (ranging from 0.00 to 20.00 wt%), the optimum concentration of glucoamylase in the mixed promoters was 3.00 wt%. The phase equilibrium data was calculated by the modified van der Waals–Platteeuw (vdW–P) model with a modification of vapor pressure of water in the empty hydrate lattice. The Peng–Robinson equation of state was used to calculate the fugacity of gas. The maximum average absolute deviation was 4.09% between the calculated results and the experimental results. It revealed that the calculated results were in good agreement with the experimental results.


2021 ◽  
Author(s):  
Oluwakemi Victoria Eniolorunda ◽  
Antonin Chapoy ◽  
Rod Burgass

Abstract In this study, new experimental data using a reliable approach are reported for solid-fluid phase equilibrium of ternary mixtures of Methane-Carbon-dioxide- n-Hexadecane for 30-73 mol% CO2 and pressures up to 24 MPa. The effect of varying CO2 composition on the overall phase transition of the systems were investigated. Three thermodynamic models were used to predict the liquid phase fugacity, this includes the Peng Robison equation of state (PR-EoS), Soave Redlich-Kwong equation of state (SRK-EoS) and the Cubic plus Association (CPA) equation of state with the classical mixing rule and a group contribution approach for calculating binary interaction parameters in all cases. To describe the wax (solid) phase, three activity coefficient models based on the solid solution theory were investigated: the predictive universal quasichemical activity coefficients (UNIQUAC), Universal quasi-chemical Functional Group activity coefficients (UNIFAC) and the predictive Wilson approach. The solid-fluid equilibria experimental data gathered in this experimental work including those from saturated and under-saturated conditions were used to check the reliability of the various phase equilibria thermodynamic models.


2018 ◽  
Vol 473 ◽  
pp. 132-137 ◽  
Author(s):  
Evertan A. Rebelatto ◽  
Gean Pablo S. Aguiar ◽  
Angelo L. Piato ◽  
João P. Bender ◽  
Marcelo Lanza ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document