phase equilibrium data
Recently Published Documents


TOTAL DOCUMENTS

451
(FIVE YEARS 18)

H-INDEX

23
(FIVE YEARS 3)

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2014
Author(s):  
Baojun Zhao ◽  
Kun Su ◽  
Xiaodong Ma

The present study investigated phase equilibria in the Na2O-SiO2-WO3 system experimentally using high-temperature equilibration, quenching, and electron probe X-ray microanalysis (EPMA). New thermodynamic information on the Na2O-SiO2-WO3 system was derived based on the newly obtained experimental results and data from the literature. The primary phase fields of sodium metasilicate, sodium disilicate, and tridymite were determined along with the isotherms at 1073, 1173, and 1273 K. The solubilities of WO3 in SiO2, Na2Si2O5, and Na2SiO3, and the solubility of SiO2 in Na2WO4 were accurately measured using EPMA. Comparisons between the existing and newly constructed phase diagram were carried out and the differences are discussed. The phase equilibrium data will be beneficial to the future development of sustainable tungsten industries and thermodynamic modelling in WO3 related systems.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4382
Author(s):  
Elinéia Castro Costa ◽  
Welisson de Araújo Silva ◽  
Eduardo Gama Ortiz Menezes ◽  
Marcilene Paiva da Silva ◽  
Vânia Maria Borges Cunha ◽  
...  

In this work, the thermodynamic data basis and equation of state (EOS) modeling necessary to simulate the fractionation of organic liquid products (OLP), a liquid reaction product obtained by thermal catalytic cracking of palm oil at 450 °C, 1.0 atmosphere, with 10% (wt.) Na2CO3 as catalyst, in multistage countercurrent absorber/stripping columns using supercritical carbon dioxide (SC-CO2) as solvent, with Aspen-HYSYS was systematically investigated. The chemical composition of OLP was used to predict the density (ρ), boiling temperature (Tb), critical temperature (Tc), critical pressure (Pc), critical volume (Vc), and acentric factor (ω) of all the compounds present in OLP by applying the group contribution methods of Marrero-Gani, Han-Peng, Marrero-Pardillo, Constantinou-Gani, Joback and Reid, and Vetere. The RK-Aspen EOS used as thermodynamic fluid package, applied to correlate the experimental phase equilibrium data of binary systems OLP-i/CO2 available in the literature. The group contribution methods selected based on the lowest relative average deviation by computing Tb, Tc, Pc, Vc, and ω. For n-alkanes, the method of Marrero-Gani selected for the prediction of Tc, Pc and Vc, and that of Han-Peng for ω. For alkenes, the method of Marrero-Gani selected for the prediction of Tb and Tc, Marrero-Pardillo for Pc and Vc, and Han-Peng for ω. For unsubstituted cyclic hydrocarbons, the method of Constantinou-Gani selected for the prediction of Tb, Marrero-Gani for Tc, Joback for Pc and Vc, and the undirected method of Vetere for ω. For substituted cyclic hydrocarbons, the method of Constantinou-Gani selected for the prediction of Tb and Pc, Marrero-Gani for Tc and Vc, and the undirected method of Vetere for ω. For aromatic hydrocarbon, the method of Joback selected for the prediction of Tb, Constantinou-Gani for Tc and Vc, Marrero-Gani for Pc, and the undirected method of Vetere for ω. The regressions show that RK-Aspen EOS was able to describe the experimental phase equilibrium data for all the binary pairs undecane-CO2, tetradecane-CO2, pentadecane-CO2, hexadecane-CO2, octadecane-CO2, palmitic acid-CO2, and oleic acid-CO2, showing average absolute deviation for the liquid phase (AADx) between 0.8% and 1.25% and average absolute deviation for the gaseous phase (AADy) between 0.01% to 0.66%.


2021 ◽  
Vol 176 (3) ◽  
Author(s):  
Edgar Dachs ◽  
Artur Benisek

AbstractA new activity model for Fe–Mg–Al biotites is formulated, which extends that of Mg–Al biotites (Dachs and Benisek, Contrib Mineral Petrol 174:76, 2019) to the K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH) system. It has the two composition variables XMg = Mg/(Mg + Fe2+) and octahedral Al, and Fe–Mg and Mg–Al ordering variables resulting in five linearly independent endmembers: annite (Ann, K[Fe]M1[Fe]2M2[Al0.5Si0.5]2T1[Si]2T2O10(OH)2, phlogopite (Phl, K[Mg]M1[Mg]2M2[Al0.5Si0.5]2T1[Si]2T2O10(OH)2, ordered Fe–Mg biotite (Obi, K[Fe]M1[Mg]2M2[Al0.5Si0.5]2T1[Si]2T2O10(OH)2, ordered eastonite (Eas, K[Al]M1[Mg]2M2[Al]2T1[Si]2T2O10(OH)2, and disordered eastonite (Easd, K[Al1/3Mg2/3]M1[Al1/3Mg2/3]2M2[Al]2T1[Si]2T2O10(OH)2. The methods applied to parameterize the mixing properties of the model were: calorimetry, analysis of existing phase-equilibrium data, line-broadening in powder absorption infrared (IR) spectra, and density functional theory (DFT) calculations. For the calorimetric study, various biotite compositions along the annite–phlogopite, annite–siderophyllite (Sid, K[Al]M1[Fe]2M2[Al]2T1[Si]2T2O10(OH)2), and annite–eastonite joins were synthesized hydrothermally at 700 °C, 4 kbar and logfO2 of around − 20.2, close to the redox conditions of the wüstite–magnetite oxygen buffer at that P–T conditions. The samples were characterised by X-ray powder diffraction (XRPD), energy-dispersive scanning electron microprobe analysis, powder absorption IR spectroscopy, and optical microscopy. The samples were studied further using relaxation calorimetry to measure their heat capacities (Cp) at temperatures from 2 to 300 K. The measured Cp/T was then integrated to get the calorimetric (vibrational) entropies of the samples at 298.15 K. These show linear behaviour when plotted as a function of composition for all three binaries. Excess entropies of mixing are thus zero for the important biotite joins. Excess volumes of mixing are also zero within error for the three binaries Phl-Ann, Ann-Sid, and Ann-Eas. KFMASH biotite, therefore, has excess enthalpies which are independent of pressure and temperature (WGij = WHij). A least-squares procedure was applied in the thermodynamic analysis of published experimental data on the Fe–Mg exchange between biotite and olivine, combined with phase-equilibrium data for phlogopite + quartz stability and experimental data for the Al-saturation level of biotite in the assemblage biotite–sillimanite–sanidine–quartz–H2O to constrain enthalpic mixing parameters and to derive enthalpy of formation values for biotite endmembers. For Fe–Mg mixing in biotite, the most important binary, this gave best-fit asymmetric Margules enthalpy parameters of WHAnnPhl = 14.3 ± 3.4 kJ/mol and WHPhlAnn = −8.8 ± 8.0 kJ/mol (3-cation basis). The resulting asymmetric molar excess Gibbs free energy (Gex) departs only slightly from ideality and is negative at Fe-rich and positive at Mg-rich compositions. Near-ideal activity–composition relationships are thus indicated for the Ann–Phl binary. The presently used low value of − 2 kJ/mol for the enthalpy change of the reaction 2/3 Phl + 1/3 Ann = Obi is generally confirmed by DFT calculations that gave − 2 ± 3 kJ/mol for this ∆HFe–Mg order, indicating that Fe–Mg ordering in biotite is weak. The large enthalpy change of ∆HMg-Al disorder = 34.5 kJ/mol for the disordering of Mg and Al on the M sites in Eas (Dachs and Benisek 2019) is reconfirmed by additional DFT calculations. In combination with WHPhlEas = 10 kJ/mol, which is the preferred value of this study describing mixing along the Phl–Eas join, Mg–Al disordering over the M sites of biotite is predicted to be only significant at high temperatures > 1000 °C. In contrast, it plays no role in metamorphic P–T settings.


2021 ◽  
Vol 19 (1) ◽  
pp. 75-85
Author(s):  
Jing Bai ◽  
Canwei Cheng ◽  
Yuanxia Wei ◽  
Kele Yan ◽  
Pan Li ◽  
...  

Abstract CO2 hydrate-based desalination (CHBD) has been developing for decades to meet the global demands of decreasing carbon dioxide (CO2) emissions. In this work, the CO2 was captured from the simulated flue gas which consists of 18.30 mol% carbon dioxide and 81.70 mol% nitrogen in the presence of tetra-n-butyl ammonium bromide (TBAB) + cyclopentane (CP) + glucoamylase. Then the phase equilibrium data of CO2 hydrate were measured by the method of isochoric pressure-search. Among the seven cases with same concentration of TBAB (0.29 mol%) and CP (5.00 vol%) and different glucoamylase proportions (ranging from 0.00 to 20.00 wt%), the optimum concentration of glucoamylase in the mixed promoters was 3.00 wt%. The phase equilibrium data was calculated by the modified van der Waals–Platteeuw (vdW–P) model with a modification of vapor pressure of water in the empty hydrate lattice. The Peng–Robinson equation of state was used to calculate the fugacity of gas. The maximum average absolute deviation was 4.09% between the calculated results and the experimental results. It revealed that the calculated results were in good agreement with the experimental results.


2020 ◽  
Vol 166 ◽  
pp. 104996
Author(s):  
Evertan A. Rebelatto ◽  
Camila Guindani ◽  
Evelin C. de Azevedo ◽  
Sandra R.S. Ferreira ◽  
J. Vladimir Oliveira ◽  
...  

2020 ◽  
Vol 10 (8) ◽  
pp. 3689-3709
Author(s):  
Shadman H. Khan ◽  
Anupama Kumari ◽  
G. Dixit ◽  
Chandrajit B. Majumder ◽  
Amit Arora

Abstract The present work focuses on developing a framework for accurate prediction of thermodynamic conditions for single-component hydrates, namely CH4, CO2, N2, H2S, and C2H6 (coded in MATLAB). For this purpose, an exhaustive approach is adopted by incorporating eight different equations of states, namely Peng–Robinson, van der Waals, Soave–Redlich–Kwong, Virial, Redlich–Kwong, Tsai-Teja, Patel, and Esmaeilzadeh–Roshanfekr, with the well-known van der Waals–Platteeuw model. Overall, for I–H–V phase region, the Virial and van der Waals equation of state gives the most accurate predictions with minimum AAD%. For Lw–H–V phase region, Peng–Robinson equation of state is found to yield the most accurate predictions with overall AAD of 3.36%. Also, genetic programming algorithm is adopted to develop a generalized correlation. Overall, the correlation yields quick estimation with an average deviation of less than 1%. The accurate estimation yields a minimal AAD of 0.32% for CH4, 1.93% for C2H6, 0.77% for CO2, 0.64% for H2S, and 0.72% for N2. The same correlation can be employed for fitting phase equilibrium data for other hydrates too. The tuning parameter, n, is to be used for fine adjustment to the phase equilibrium data. The findings of this study can help for a better understanding of phase equilibrium and cage occupancy behavior of different gas hydrates. The accuracy in phase equilibria is intimately related to industrial applications such as crude oil transportation, solid separation, and gas storage. To date, no single correlation is available in the literature that can accurately predict phase equilibria for multiple hydrate species. The novelty of the present work lies in both the accuracy and generalizability of the proposed correlation in predicting the phase equilibrium data. The genetic programming generalized correlation is convenient for performing quick equilibrium prediction for industrial applications.


Sign in / Sign up

Export Citation Format

Share Document