Optimising Depth Selection on Section Milling Operation to Secure Sustained Casing Pressure During Plug and Abandonment Operation

2021 ◽  
Author(s):  
Dianita Wangsamulia ◽  
Khresno Pahlevi ◽  
Simon Paulus ◽  
Gama Aditya ◽  
Heri Tanjung ◽  
...  

Abstract D-01 was an exploration well requiring a Plug-and-Abandonment (P&A) procedure with sustained casing pressure up to 2,000 psi on the B annulus. The presence of Sustained Casing Pressure (SCP) is one of the major technical challenges to decommission and abandon the well safely. Several attempts to secure the well using the perforation-and-squeeze method were performed – but failed. It was decided to perform section milling operations to create a viable rock-to-rock barrier. In this operation, the key factor in determining success, is selecting the correct depth to mill safely and secure the annular pressure source. A comprehensive approach was taken to determine the optimum depth for the section milling by evaluating existing open-hole and cased-hole data. Additionally, triple-detector Pulsed Neutron Log (PNL) was also performed prior to the section milling operation. The triple-detector PNL tool offered not only behind casing porosity (TPHI) and sigma (SIGM) measurement, but also a relatively new measurement in the oil and gas industry called Fast Neutron Cross Section (FNXS), which were expected to provide more accurate gas detection and gauge the condition near the borehole. By combining all the logs and reservoir data, the milling interval was selected and the section milling and subsequent cement plug operations were performed. Evaluation of existing open-hole and cased-hole logs provided geological and petrophysical insights which were useful in determining the hydrocarbon source charging the B-annulus. Further analysis on PNL data provided indication of possible gas pockets in the B-annulus. This information was used to distinguish between shallower formation sources or gas pockets that were not yet bled off. The operation on D-01 successfully resolved the B-annulus issue and the well was properly abandoned per regulatory requirements. Considering the complexity and high cost of section milling operations, a thorough review of data and pre-job logging increases the probability of selecting the optimum intervals needed to successfully complete P&A operations on SCP wellbores.

2018 ◽  
Vol 67 ◽  
pp. 03001 ◽  
Author(s):  
Muhammad Asyri ◽  
Kamarza Mulia

The purpose of this study is to develop guideline and decision tree for selecting proper material of squeeze cementing operation as part of permanent well abandonment project in PT XYZ. The existing guideline in oil and gas industry does not cover the detail of cement type selection prior to do squeeze cementing job and this may cause failure in the operation and give the high cost impact due to remedial job. It is expected that the result of decision tree and guideline in this study can be used as a reference for plug and abandonment project in. The method used in this research is by calculating the value of the injectivity factor obtained from field study as a key factor in determining the type of cement for squeeze cementing operation. If the injector factor value is less than 2000 (<2000), it is concluded that G type cement (G class cement) is preferred to be used to isolate the reservoir formation zone. While for the injectivity factor value more than 2000 (> 2000), the reservoir is considered as tight formation and difficult to penetrate, so the use of microfine cement is expected to isolate the reservoir formation zone.


2015 ◽  
Author(s):  
D. J. Schlosser ◽  
M.. Johe ◽  
T.. Humphreys ◽  
C.. Lundberg ◽  
J. L. McNichol

Abstract The Oil and Gas industry has explored and developed the Lower Shaunavon formation through vertical drilling and completion technology. In 2006, previously uneconomic oil reserves in the Lower Shaunavon were unlocked through horizontal drilling and completions technologies. This success is similar to the developments seen in many other formations within the Williston Basin and Western Canadian Sedimentary Basin including Crescent Point Energy's Viewfield Bakken play in southeast Saskatchewan. In the Lower Shaunavon play, the horizontal multistage completion era began in 2006, with horizontal divisions of four to six completion stages per well that utilized ball-drop sleeves and open-hole packers. By 2010, the stage count capabilities of ball-drop systems had increased and liners with nine to 16 stages per well were being run. With an acquisition in 2009, Crescent Point Energy began operating in the Lower Shaunavon area. The acquisition was part of the company's strategy to acquire large oil-in-place resource plays. Recognizing the importance that technology brings to these plays, Crescent Point Energy has continuously developed and implemented new technology. In 2009, realizing the success of coiled tubing fractured cemented liners in the southeast Saskatchewan Viewfield Bakken play, Crescent Point Energy trialed their first cemented liners in the Lower Shaunavon formation. At the same time, technology progressed with advancements in completion strategies that were focused on fracture fluids, fracture stages, tool development, pump rates, hydraulic horsepower, environmental impact, water management, and production. In 2013, another step change in technology saw the implementation of coiled tubing activated fracture sleeves in cemented liner completions. Based on field trials and well results in Q4 2013, Crescent Point Energy committed to a full cemented liner program in the Lower Shaunavon. This paper presents the evolution of Crescent Point Energy's Lower Shaunavon resource play of southwest Saskatchewan. The benefits of current completion techniques are: reductions in water use, increased production, competitive well costs, and retained wellbore functionality for potential re-fracture and waterflooding programs.


2019 ◽  
Vol 11 (4) ◽  
pp. 5-13 ◽  
Author(s):  
Yuriy N. Golubchikov ◽  
Victor I. Kruzhalin ◽  
Aleksandra D. Nikanorova

Tourism is the key factor of human presence in the Arctic region. The number of tourist visits has been growing extensively since the end of XX century. The Arctic region is not regarded only as prospective region for oil and gas industry but now it is also recognized as the region with high potential for tourism development. The research is dedicated to the assessment of the spatial distribution of human presence within the Arctic region on the basis of statistical analysis of population and tourist visits in different parts of the Arctic. Taking into account the uncertainty of regional Arctic borders definition, which are commonly determined in accordance with given purposes and tasks, we assessed the population and tourist visits for the Arctic Zone of the Russian Federation as administrative union as well as for the Arctic region as physic-geographical region.The growing number of tourists in the Arctic region influences future development prospects of the region. In 2017 the Arctic region with population of 4.3 million people was visited by 10.2 million tourist. While the favorable environmental conditions of Arctic ecosystems exist, the Arctic region should be considered as the source of nature resources for tourism and various recreational activities. Modern technologies enable the development of travel industry in the region, and therefore the industrial paradigm of “conquer” and “utilization” should be replaced with the axiological paradigm of “Arctic beauty” and recreational resource value.


2021 ◽  
Author(s):  
Gerard O'Reilly ◽  
Alvin W. Chan

Abstract Depleted Fracture Gradients have been a challenge for the oil and gas industry during drilling and cementing operations for over 30 years. Yet, year after year, problems related to lost circulation, borehole instability (low mud weight due a low fracture gradient), and losses during cementing operations leading to NPT and remedial work continue to rank as some of the top NPT events that companies face. This paper will demonstrate how the geomechanical modeling, well execution and remedial strengthening operations should be implemented to provide for a successful outcome. The use of a Fracture Gradient (FG) framework will be discussed, and the use of a negotiated fracture gradient will highlight how the fracture gradient can be changed during operations. This paper will also show actual examples from Deepwater operations that have successfully executed a detailed borehole strengthening program. Through our offset studies and operational experience, we will provide a format for navigating complex depleted drilling issues and show an example on recovering from low fracture gradients. This paper will demonstrate (1) how our framework facilitated multi-disciplinary collaborative discussion among our subsurface and well engineering communities; (2) how the impacts of drilling fluids and operational procedures can change this lost circulation threshold; and (3) how our negotiated FG approach has successfully delivered wells drilled in narrow margins.


2021 ◽  
Vol 54 (2F) ◽  
pp. 48-61
Author(s):  
Walaa Khyrie ◽  
Ayad Alrazzaq

The oil and gas industry, wellbore instability plays an important role in financial losses and stops the operations while the drilling which leads to extra time known as non-productive time. In this work, a comprehensive study was carried out to realize the nature of the instability problems of the wellbore in Rumaila oilfield to improve the well design. The study goal is to develop a geomechanical model in one dimension by utilizing Schlumberger Techlog (Version 2015) software. Open hole wireline measurements were needed to develop the model. The model calibrating and validating with core laboratory tests (triaxial test), well test (Mini-frac test), repeated formation test. Mohr-Coulomb, Mogi-Coulomb, and Modified Lade are the three failure criteria which utilized to analyze the borehole breakouts and to determine the minimum mud weight needed for a stable wellbore wall. For more accuracy of the geomechanical model, the predicted profile of the borehole instability is compared with the actual failure of the borehole that is recorded by caliper log. The results of the analysis showed that the Mogi-Coulomb criteria are closer to the true well failure compared with the other two criteria and considered as the better criteria in predicting the rock failure in the Rumaila oilfield. The wellbore instability analysis revealed that the vertical and low deviated wells (less than 40º) is safer and more stable. While, the horizontal and directional wells should be drilled longitudinally to the direction of the minimum horizontal stresses at a range between 140º–150º North West-South East and the mud weight recommended is increased to 10.5 ppg to avoid most of instabilities problems. The results contribute in development plan of the wells nearby the studied area and decreasing NPT and cost.


2001 ◽  
Vol 41 (1) ◽  
pp. 793
Author(s):  
B. Purdy

‘Australia must have a taxation system which equips it for the coming decades, not for those that have passed. If we do not achieve this, Australians will not enjoy the standard of living this nation has the potential to deliver’ (Ralph et al, 1999).One of the outcomes of the increasingly global nature of the resource industry is countries, especially those in close proximity to each other, are now competing for investment in resource projects. A key factor for investors assessing competing resource projects is the host country’s fiscal regime, including income tax, as this can significantly affect a project’s profitability and cash flow.The purpose of this paper is to give an overview of the income tax regime and issues currently facing the upstream Australian oil and gas industry (Sarich, 20001 ). In particular, this paper will:examine the Federal Government’s Review of Business Taxation and identify how the announcements impact on exploration and production activities;compare the Australian income tax regime on exploration and production to other countries in the region with whom Australia competes for investment and capital; andcomment on income tax issues facing Australian resource companies when conducting foreign activities.


2020 ◽  
Vol 78 (7) ◽  
pp. 861-868
Author(s):  
Casper Wassink ◽  
Marc Grenier ◽  
Oliver Roy ◽  
Neil Pearson

2004 ◽  
pp. 51-69 ◽  
Author(s):  
E. Sharipova ◽  
I. Tcherkashin

Federal tax revenues from the main sectors of the Russian economy after the 1998 crisis are examined in the article. Authors present the structure of revenues from these sectors by main taxes for 1999-2003 and prospects for 2004. Emphasis is given to an increasing dependence of budget on revenues from oil and gas industries. The share of proceeds from these sectors has reached 1/3 of total federal revenues. To explain this fact world oil prices dynamics and changes in tax legislation in Russia are considered. Empirical results show strong dependence of budget revenues on oil prices. The analysis of changes in tax legislation in oil and gas industry shows that the government has managed to redistribute resource rent in favor of the state.


Sign in / Sign up

Export Citation Format

Share Document