scholarly journals Determination of Safe Mud Weight Window in Rumaila Oilfield, Southern Iraq

2021 ◽  
Vol 54 (2F) ◽  
pp. 48-61
Author(s):  
Walaa Khyrie ◽  
Ayad Alrazzaq

The oil and gas industry, wellbore instability plays an important role in financial losses and stops the operations while the drilling which leads to extra time known as non-productive time. In this work, a comprehensive study was carried out to realize the nature of the instability problems of the wellbore in Rumaila oilfield to improve the well design. The study goal is to develop a geomechanical model in one dimension by utilizing Schlumberger Techlog (Version 2015) software. Open hole wireline measurements were needed to develop the model. The model calibrating and validating with core laboratory tests (triaxial test), well test (Mini-frac test), repeated formation test. Mohr-Coulomb, Mogi-Coulomb, and Modified Lade are the three failure criteria which utilized to analyze the borehole breakouts and to determine the minimum mud weight needed for a stable wellbore wall. For more accuracy of the geomechanical model, the predicted profile of the borehole instability is compared with the actual failure of the borehole that is recorded by caliper log. The results of the analysis showed that the Mogi-Coulomb criteria are closer to the true well failure compared with the other two criteria and considered as the better criteria in predicting the rock failure in the Rumaila oilfield. The wellbore instability analysis revealed that the vertical and low deviated wells (less than 40º) is safer and more stable. While, the horizontal and directional wells should be drilled longitudinally to the direction of the minimum horizontal stresses at a range between 140º–150º North West-South East and the mud weight recommended is increased to 10.5 ppg to avoid most of instabilities problems. The results contribute in development plan of the wells nearby the studied area and decreasing NPT and cost.

2009 ◽  
Vol 12 (04) ◽  
pp. 630-638 ◽  
Author(s):  
Reidar B. Bratvold ◽  
J. Eric Bickel ◽  
Hans Petter Lohne

Summary An important task that petroleum engineers and geoscientists undertake is to produce decision-relevant information. Some of the most important decisions we make concern what type and what quality of information to produce. When decisions are fraught with geologic and market uncertainties, this information gathering may such forms as seismic surveys, core and well test analyses, reservoir simulations, market analyses, and price forecasts--which the industry spends billions of US dollars each year. Yet, considerably less time and resources are expended on assessing the profitability or value of this information. Why is that? This paper addresses how to make value-of-information (VOI) analysis more accessible and useful by discussing its past, present, and future. On the basis of a survey of SPE publications, we provide an overview of the use of VOI in the oil and gas industry, focusing on how the analysis was carried out and for which types of decisions VOI analysis has been performed. We highlight areas in which VOI methods have been used successfully and identify important challenges. We then identify and discuss the possible causes for the limited use of VOI methods and suggest ways to increase the use of this powerful analysis tool. Introduction One of the most useful features of decision analysis is its ability to distinguish between constructive and wasteful information gathering. VOI analysis evaluates the benefits of collecting additional information before making a decision. Such information gathering may be worthwhile if it holds the possibility of changing the decision that would be made without further information. VOI attributes no value to "uncertainty reduction" or "increased confidence" per se. Rather, value is added by enabling the decision maker (DM) to better "tune" his/her choice to the underlying uncertainty. Thus, information value is forever an entanglement of uncertainty and decision making; one cannot value information outside of a particular decision context.


Author(s):  
Sławomir OSZCZEPALSKI ◽  
Andrzej CHMIELEWSKI ◽  
Stanisław SPECZIK

The Polish Geological Institute – NRI has conducted investigations of the Kupferschiefer series since 1957, when the giant sediment-hosted stratiform Cu-Ag ore deposit was discovered in the central part of the Fore-Sudetic Monocline. Until 1991, a number of drilling programs were completed by PGI-NRI and later research has been focusing mainly on cooperation with oil and gas industry and their core material. Over the last few years, thanks to systematic examination of the drill holes located in the north-western extension, many prospective areas have been recognized and delineated. These prospects are located between Lubin-Sieroszowice deposit and the eastern part of the Zielona Góra oxidized field. In the Kożuchów area, the lower part of Zechstein copper-bearing series contain only relict sulphide mineralization accompanied by iron oxides while reduced rocks with metal sulphides occur in the uppermost part of Zechstein Limestone or at the base of Lower Anhydrite. Grochowice area, where reduced facies prevail in copper-bearing series, is characterized by the predomination of rich Cu-Ag mineralization proximaly to oxidized area. The western part of studied area is dominated by Cu-S type sulphides (chalcocite, digenite, covellite) whereas the eastern part is represented by Cu-Fe-S type minerals (bornite, chalcopyrite) with high galena and sphalerite concentrations. The spatial variability of sulphide mineralization with respect to the oxidized rocks indicates that Bytom Odrzański deposit extends in the north-west direction, continuing in the form of a copper belt along the eastern border of the oxidized area. An extensive deep exploration drilling program is implemented to verify the resource potential within predicted copper belt.


2001 ◽  
Vol 41 (1) ◽  
pp. 777
Author(s):  
B.F Ronalds

Oil and gas production is characterised by a truly international industry, and yet a unique local environment. Solutions developed elsewhere cannot always be imported directly for Australian use. For this reason alone, a strong local technology base is of value to the Australian oil and gas industry. Other benefits include the ability to provide high quality education and training for people entering, and already in, the industry.A case study is described where the Western Australian technology base is facilitating solutions to a specific challenge faced on the North West Shelf (NWS); namely, that the criteria for reliable development and operation of its offshore infrastructure for oil and gas production are more severe than other petroleum provinces, requiring new analytical tools to be developed.


1997 ◽  
Vol 37 (1) ◽  
pp. 560
Author(s):  
H.B. Goff

The traditional planning for decommissioning oil and gas projects has included the option to remove platforms from the project area leaving the site clear for other uses. However, decommissioning presents a number of opportunities for alternative uses for facilities that are relatively close to the coast and in developing areas.This paper examines the potential for the alternative use of facilities on the North West Shelf using the WMC operated Airlie Project as an example.Airlie Island presents an opportunity to conduct a number of research activities which would have the capability to enhance the understanding of the natural environment in the region and to gain better understanding of the long-term impact of the oil and gas industries impact on the natural environment. There is also the supplementary opportunity to conduct engineering research applicable to the oil and gas industry without the distraction and hazards of an operating field to interfere with the research projects. Allied to these possibilities is the potential to conduct research applicable to tourism and fishing related activities which are beginning to exert more pressure and the North West Shelf environment than has been the case in the recent past.In addition to the research opportunities, there exists the potential to manage Airlie Island as a support base for tourism activities on a commercial basis. The example presented could easily be applied to other projects nearing decommissioning.


2015 ◽  
Author(s):  
D. J. Schlosser ◽  
M.. Johe ◽  
T.. Humphreys ◽  
C.. Lundberg ◽  
J. L. McNichol

Abstract The Oil and Gas industry has explored and developed the Lower Shaunavon formation through vertical drilling and completion technology. In 2006, previously uneconomic oil reserves in the Lower Shaunavon were unlocked through horizontal drilling and completions technologies. This success is similar to the developments seen in many other formations within the Williston Basin and Western Canadian Sedimentary Basin including Crescent Point Energy's Viewfield Bakken play in southeast Saskatchewan. In the Lower Shaunavon play, the horizontal multistage completion era began in 2006, with horizontal divisions of four to six completion stages per well that utilized ball-drop sleeves and open-hole packers. By 2010, the stage count capabilities of ball-drop systems had increased and liners with nine to 16 stages per well were being run. With an acquisition in 2009, Crescent Point Energy began operating in the Lower Shaunavon area. The acquisition was part of the company's strategy to acquire large oil-in-place resource plays. Recognizing the importance that technology brings to these plays, Crescent Point Energy has continuously developed and implemented new technology. In 2009, realizing the success of coiled tubing fractured cemented liners in the southeast Saskatchewan Viewfield Bakken play, Crescent Point Energy trialed their first cemented liners in the Lower Shaunavon formation. At the same time, technology progressed with advancements in completion strategies that were focused on fracture fluids, fracture stages, tool development, pump rates, hydraulic horsepower, environmental impact, water management, and production. In 2013, another step change in technology saw the implementation of coiled tubing activated fracture sleeves in cemented liner completions. Based on field trials and well results in Q4 2013, Crescent Point Energy committed to a full cemented liner program in the Lower Shaunavon. This paper presents the evolution of Crescent Point Energy's Lower Shaunavon resource play of southwest Saskatchewan. The benefits of current completion techniques are: reductions in water use, increased production, competitive well costs, and retained wellbore functionality for potential re-fracture and waterflooding programs.


2021 ◽  
Author(s):  
Olga Tatur ◽  
Yuri Petrakov ◽  
Alexey Sobolev

Abstract Geomechanical modeling is an integral part of the oil and gas industry and is used in all life cycles of the field - monitoring and improving the efficiency of well construction, choosing a completion system, modeling hydraulic fracturing processes, modeling development processes taking into account changes in the stress state of the reservoir, taking into account the fault, salt tectonics, control over the development of the reservoir, control of subsidence of the earth's surface. The success of geomechanical modeling directly depends on the quantity and quality of input data. In contrast to the geological and hydrodynamic models, in geomechanics there is still no unified approach and algorithm for quantifying the model error. The quality of the geomechanical model is defined as "satisfactory" / "not satisfactory" and "confirmed by actual data" / "not confirmed by actual data". In a series of articles on "Metrological support of a geomechanical model", the authors show an algorithm for a quantitative assessment of the error of a geomechanical model. The proposed algorithm takes into account the measurement error (in the well and in the laboratory), the quality of logging data, direct measurements or reconstructed measurements, the tightness of correlations (both for the results of core studies and for the reconstruction of missing logging data), the calculation of the uncertainty taking into account the calibration information. This paper describes a generalized algorithm for quantifying the error of a geomechanical model, presented in previous articles, and provides a method for quantifying calculate the uncertainty, taking into account calibration information, such as measurements of horizontal stresses, core studies in laboratory conditions.


Oseanika ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 1-12
Author(s):  
Trevi Jayanti Puspasari ◽  
Sumirah Sumirah

ABSTRAK Tuntutan untuk mengikuti perkembangan kebutuhan industri migas menjadi motivasi dalam mengembangkan teknik penerapan dan aplikasi akuisisi seismik multichannel 2D. Perkembangan kebutuhan eksplorasi industri migas tidak diimbangi dengan  anggaran peningkatan alat survei seismik milik negara termasuk yang terpasang di K.R. Baruna Jaya II – BPPT. Penerapan metode pseudo 3D pada disain survei dan pengolahan data dapat menjadi solusi efektif dan efisien dalam mengatasi persoalan tersebut. Metode Pseudo 3D merupakan suatu teknik akuisisi dan pengolahan data dengan menitik beratkan pada disain akuisisi dan inovasi pengolahan data seismik 2D menghasilkan penampang keruangan (3D) berdasarkan input data seismik yang hanya 2D. Penelitian ini bertujuan untuk mengaplikasikan metode pseudo 3D seismik di Cekungan Jawa Barat Utara menggunakan wahana KR. Baruna Jaya II yang dilakukan pada Desember 2009. Sebagai hasil, pengolahan data 2D lanjutan telah dilakukan dan diperoleh profil penampang seismik keruangan (3D). Profil hasil pengolahan data Pseudo 3D ini dapat menjadi acuan dalam pengambilan keputusan dan rencana survei berikutnya. Kata Kunci: Seismik Pseudo 3D, Seismik multichannel 2D, K.R. Baruna Jaya II, Cekungan Jawa Barat Utara. ABSTRACT [Aplication of Seismic Pseudo 3D in Nort West Java Basin Using K.R. Baruna Jaya II] The demand to follow the growth of  needs in the oil and gas industry is a motivation in the developing of techniques for assessment and applying 2D multichannel seismic acquisition. The development of exploration needs for the oil and gas industry is not matched by budget for an upgrade Government’s seismic equipment including equipment installed in K.R. Baruna Jaya II. Applied Pseudo 3D method in survey and seismic data processing can be an effective and efficient solution. The pseudo 3D method is a data acquisition and processing technique with an emphasis on the acquisition design and 2D seismic data processing innovation to produce a 3D seismic volume. This study aims to apply the pseudo 3D seismic method in the North West Java Basin using the K.R. Baruna Jaya II which was held in Desember 2009. As a Result, advanced seismic processing was carried out to output a seismic volume (3D) profile. This profile can be used as a reference in making decisions and planning the next survey.   Keywords:          Pseudo 3D Seismic, Seismic 2D multichannel, K.R. Baruna Jaya II, Nort West Java Basin.


2011 ◽  
Vol 51 (1) ◽  
pp. 179
Author(s):  
Alastair Sharp-Paul ◽  
Alexandra Hare ◽  
Alice Turnbull ◽  
Tara Halliday

Focusing on Australian projects, this paper provides a summary of the key environmental challenges and developments that arose in 2010 and the industry’s response. The paper considers: developments in legislation and the regulatory environment relating to environmental approvals and management; major project approvals and their environmental requirements and implications; key environmental incidents; and reviews new environmental research and management initiatives that were introduced by the industry. A number of states have introduced changes to the way legislation and regulations are interpreted through changes to guidelines and administrative procedures. There has been a general increase in the standard and level of information that regulators expect proponents to provide and while generally these expectations are documented in guidelines and other documents, in some instances there has been a perceived ‘moving of the goal posts’ without clear guidance on what is expected and how the information will be considered once provided. There has been a number of major projects either commencing or gaining environmental approval in 2010. This includes major projects: in Western Australia, on the North West Shelf and in the Timor Sea/Browse Basin; onshore in Queensland in the coal-seam gas fields and continued exploration and development both onshore and offshore around Australia. One of the most significant approvals in 2010 was the Prelude LNG Project–the first approval in Australia of floating LNG technology. Major environmental incidents in 2009 (Montara in Australia and Macondo in the USA) continued to have repercussions in 2010 with the draft government response to the Report of the Montara Commission of Inquiry released in November. These incidents have put the oil and gas industry under the spotlight and this paper looks at some of the statistics on the frequency and severity of environmental incidents, albeit at a high level. Finally, the industry has continued to implement a number of environmentally related initiatives both in response to government policy and suggestion and independently through groups such as the APPEA environment committee.


2017 ◽  
Vol 57 (2) ◽  
pp. 814
Author(s):  
Ahmadreza Younessi

Analytical approaches have been successfully used for decades to analyse different geomechanical related problems in the oil and gas industry. These approaches are still applicable for most problems. However, they may not be suitable for complex environments that the industry is increasingly facing nowadays. The challenges to develop complex fields require the industry to have a better understanding and prediction of the behaviour of reservoir rocks and their overburden formations during field production. This can be partially achieved by conducting a more comprehensive analysis by means of numerical methods in a wider scale of space and time. We refer to this as 4D geomechanical modelling. The concept of 4D geomechanical modelling is relatively new in the industry, and there is limited knowledge regarding the applications and advantages of this type of modelling within disciplines other than geomechanics. It is essential to understand in which type of reservoirs and at what stage of development this type of modelling should be considered. Here in this manuscript, after discussing these considerations, the techniques and procedures to build and interpret a 4D geomechanical model are discussed.


2021 ◽  
Author(s):  
Gerard O'Reilly ◽  
Alvin W. Chan

Abstract Depleted Fracture Gradients have been a challenge for the oil and gas industry during drilling and cementing operations for over 30 years. Yet, year after year, problems related to lost circulation, borehole instability (low mud weight due a low fracture gradient), and losses during cementing operations leading to NPT and remedial work continue to rank as some of the top NPT events that companies face. This paper will demonstrate how the geomechanical modeling, well execution and remedial strengthening operations should be implemented to provide for a successful outcome. The use of a Fracture Gradient (FG) framework will be discussed, and the use of a negotiated fracture gradient will highlight how the fracture gradient can be changed during operations. This paper will also show actual examples from Deepwater operations that have successfully executed a detailed borehole strengthening program. Through our offset studies and operational experience, we will provide a format for navigating complex depleted drilling issues and show an example on recovering from low fracture gradients. This paper will demonstrate (1) how our framework facilitated multi-disciplinary collaborative discussion among our subsurface and well engineering communities; (2) how the impacts of drilling fluids and operational procedures can change this lost circulation threshold; and (3) how our negotiated FG approach has successfully delivered wells drilled in narrow margins.


Sign in / Sign up

Export Citation Format

Share Document