A New Arab-D Depositional Model, Ghawar Field, Saudi Arabia

Author(s):  
F.O. Meyer ◽  
R.C. Price
2007 ◽  
Author(s):  
Abdullah Abdulrahman Al-Fawwaz ◽  
Nedhal Mohamed Al-Musharfi ◽  
Parvez Jamil Butt ◽  
Abdul Fareed

GeoArabia ◽  
1996 ◽  
Vol 1 (2) ◽  
pp. 267-284
Author(s):  
John L. Douglas ◽  

ABSTRACT The North ‘Ain Dar 3-D geocellular model consists of geostatistical models for electrofacies, porosity and permeability for a portion of the Jurassic Arab-D reservoir of Ghawar field, Saudi Arabia. The reservoir consists of a series of shallow water carbonate shelf sediments and is subdivided into 10 time-stratigraphic slices on the basis of core descriptions and gamma/porosity log correlations. The North ‘Ain Dar model includes an electrofacies model and electrofacies-dependent porosity and permeability models. Sequential Indicator Simulations were used to create the electrofacies and porosity models. Cloud Transform Simulations were used to generate permeability models. Advantages of the geostatistical modeling approach used here include: (1) porosity and permeability models are constrained by the electrofacies model, i.e. by the distribution of reservoir rock types; (2) patterns of spatial correlation and variability present in well log and core data are built into the models; (3) data extremes are preserved and are incorporated into the model. These are critical when it comes to determining fluid flow patterns in the reservoir. Comparison of model Kh with production data Kh indicates that the stratigraphic boundaries used in the model generally coincide with shifts in fluid flow as indicated by flowmeter data, and therefore represent reasonable flow unit boundaries. Further, model permeability and production estimated permeability are correlated on a Kh basis, in terms of vertical patterns of distribution and cumulative Kh values at well locations. This agreement between model and well test Kh improves on previous, deterministic models of the Arab-D reservoir and indicates that the modeling approach used in North ‘Ain Dar should be applicable to other portions of the Ghawar reservoir.


2017 ◽  
Author(s):  
Ahmed. Duaij ◽  
Danish. Ahmed ◽  
Mohammad Arifin ◽  
Adzlan Ayob ◽  
Rodrigo Sa ◽  
...  

GeoArabia ◽  
2001 ◽  
Vol 6 (1) ◽  
pp. 45-60 ◽  
Author(s):  
David L. Cantrell ◽  
Peter K. Swart ◽  
Robertson C. Handford ◽  
Christopher G. Kendall ◽  
Hildegard Westphal

ABSTRACT At least five distinct types of dolomite occur in the Arab-D Reservoir in Ghawar field, Saudi Arabia – one of which appears to be responsible for high flow or ‘super-k’. These dolomite types are distinct petrographically, geochemically and stratigraphically: a finely-crystalline non-fabric-preserving (NFP) variety of dolomite in the lower Arab-D (Zone 3) with low oxygen isotope values and generally poor reservoir quality;a medium-crystalline NFP dolomite with high oxygen isotope values and very poor reservoir quality in the upper Arab-D (Zone 2);a medium to coarsely-crystalline NFP dolomite with low oxygen isotopic values and very good reservoir quality (‘super-k’) occurring in Zone 2; anda finely-crystalline fabric-preserving (FP) dolomite in the uppermost Arab-D (Zone 1) that contains high oxygen isotope values and has generally fair to poor reservoir quality. Previous studies have documented a rare fifth type of dolomite, baroque or ‘saddle’ dolomite, that occurs locally in the reservoir as well. This study also quantified and mapped the abundance and distribution of dolomite across the field, using all available core and log data. Analysis of dolomite distribution map patterns reveals that dolomite occurs in Ghawar as a series of linear trends extending for tens’s of kilometers. These map pattern trends are best-developed in Zone 2B, but are also visible in Zones 2A and 3A as well. Baroque dolomite appears to be limited to a few areas of vertically pervasive dolomite occurring on the same trends of high dolomite content. The linearity of these dolomite trends strongly suggests that some structural element is responsible for controlling their orientation. We interpret these linear patterns to have formed in response to a series of fracturing and/or faulting events that allowed dolomitizing fluids to move up into the reservoir from below, and preferentially dolomitize there. Both a qualitative and a quantitative analysis of performance data (flowmeters) in southern Ghawar (Haradh) indicate that these trends of high dolomite have a profound influence on fluid flow in the reservoir. A qualitative analysis of occurrences of ‘super-k’ in the Arab-D in Haradh suggests that most ‘super-k’ zones (seen as ‘spikes’ or step profiles on the flowmeter) occur in the high dolomite trend in Haradh. A quantitative analysis of flowmeter data and a comparison of this analysis with dolomite map patterns indicate that most reservoir flow occurs where dolomite is abundant, and suggests that there is a direct relationship between patterns of high flow and high dolomite.


Sign in / Sign up

Export Citation Format

Share Document