Critical Gas Saturation: Modeling and Sensitivity Studies

Author(s):  
Xuehai Li ◽  
Y.C. Yortsos
Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 210
Author(s):  
Ioannis Nikolaos Tsimpanogiannis ◽  
Emmanuel Stamatakis ◽  
Athanasios Konstantinos Stubos

We examine the critical pore radius that results in critical gas saturation during pure methane hydrate dissociation within geologic porous media. Critical gas saturation is defined as the fraction of gas volume inside a pore system when the methane gas phase spans the system. Analytical solutions for the critical pore radii are obtained for two, simple pore systems consisting of either a single pore-body or a single pore-body connected with a number of pore-throats. Further, we obtain critical values for pore sizes above which the production of methane gas is possible. Results shown in the current study correspond to the case when the depression of the dissociation temperature (due to the presence of small-sized pores; namely, with a pore radius of less than 100 nm) is considered. The temperature shift due to confinement in porous media is estimated through the well-known Gibbs-Thompson equation. The particular results are of interest to geological media and particularly in the methane production from the dissociation of natural hydrate deposits within off-shore oceanic or on-shore permafrost locations. It is found that the contribution of the depression of the dissociation temperature on the calculated values of the critical pore sizes for gas production is limited to less than 10% when compared to our earlier study where the porous media effects have been ignored.


Author(s):  
Steffen Berg ◽  
◽  
Ying Gao ◽  
Apostolos Georgiadis ◽  
Niels Brussee ◽  
...  

2021 ◽  
Author(s):  
Georgios Nikolakopoulos-Skelly ◽  
Marie Ann Giddins ◽  
Rong Xu ◽  
Chioma Ezeogu ◽  
Matthew Jackson

Abstract In this paper, we describe an approach to designing monitoring schemes for carbon dioxide sequestration in saline aquifers. Changes in key parameters are investigated over timescales of up to a thousand years. The study addresses movement of the CO2 plume, possible locations for observation wells and the period for which a storage location should be monitored. For the initial sensitivity analysis, we use a simple homogeneous reservoir simulation model to understand how reservoir, operational and model parameters affect the amount of mobile CO2 remaining at different times over the storage period. The parameters with the greatest impact are taken forward to uncertainty studies, which are conducted on two reservoir models with more realistic geological characteristics: one with lateral extensive baffles and one with sand channels. For these cases, we investigate the movement of the CO2 plume and its arrival at possible locations for an observation well. Results from the sensitivity analysis indicate that the most influential parameters are horizontal permeability, dipping angle, critical gas saturation, salinity, the period of injection and the capillary pressure curve. The results from the uncertainty studies indicate that for the two heterogeneous models, a reasonable monitoring period is in the range of 60 to 150 years and that the movement of the plume probably stops after approximately 100 years. The arrival time of CO2 at the observation well can be predicted with greater confidence when the well is in close proximity to the injector and in the direction in which CO2 will preferably move. A correlation analysis on the uncertain parameters shows that the main contributor affecting the amount of mobile CO2 is critical gas saturation, followed by dipping angle and the period of injection. While previous studies focus on how different parameters affect immobilization of CO2, this study aims to develop a methodology to plan long-term monitoring of mobile CO2. Prediction of the expected plume movement can help to determine suitable observation well locations and reasonable timescales for the monitoring process.


1981 ◽  
Vol 33 (05) ◽  
pp. 907-908 ◽  
Author(s):  
A. de Swaan

1996 ◽  
Vol 2 (2) ◽  
pp. 117-123 ◽  
Author(s):  
R. I. Hawes ◽  
R. A. Dawe ◽  
R. N. Evans ◽  
C. A. Grattoni

1992 ◽  
Vol 7 (04) ◽  
pp. 337-344 ◽  
Author(s):  
Abbas Firoozabadi ◽  
Bard Ottesen ◽  
Morten Mikklesen

SPE Journal ◽  
2018 ◽  
Vol 24 (01) ◽  
pp. 178-199
Author(s):  
Tae Wook Kim ◽  
Anthony R. Kovscek

Summary The critical gas saturation in permeable sands was studied as a function of depletion rate and the presence of an aqueous phase as the major experimental variables. Voidage-replacement ratios (VRR = injected volume/produced volume) less than 1 were used to obtain pressure depletion with active water injection. Three different live crude oils were considered. Two of the oils are viscous Alaskan crudes with dead-oil viscosities of 87.7 and 600 cp, whereas the third is a light crude oil with a dead-oil viscosity of 9.1 cp. The critical gas saturation for all tests ranged from 4 to 16%. These values for critical gas saturation are consistent with the finding that the gas phase displayed characteristics similar to those of a foamy oil. For a given oil and depletion rate, the critical gas saturation was somewhat larger for VRR = 0 than it was for VRR = 0.7. The oil recovery correlates with the critical gas saturation (i.e., for a given VRR, tests exhibit greater oil recovery when the critical gas saturation is elevated). For the conditions tested, there was not a strong correlation of critical gas saturation over more than two orders of magnitude of the rate of pressure depletion, for a given VRR. Such behavior might be consistent with theoretical studies reported elsewhere that suggest that the critical gas saturation is independent of the pressure-depletion rate when the rate of depletion is small.


Sign in / Sign up

Export Citation Format

Share Document