Production Data Analysis Aids Fracture Treatment Design/Cherokee Group in Western Oklahoma

1997 ◽  
Author(s):  
Robert F. Shelley ◽  
Alan Stacy
2006 ◽  
Author(s):  
Christine A. Ehlig-Economides ◽  
Iskander R. Diyashev ◽  
Peter P. Valko ◽  
Kolawole Babajide Ayeni ◽  
Michael Economides

2021 ◽  
Vol 200 ◽  
pp. 108377
Author(s):  
Bing Kong ◽  
Zhuoheng Chen ◽  
Shengnan Chen ◽  
Tianjie Qin

2021 ◽  
Author(s):  
Adel Mehrabadi ◽  
Gabriele Urbani ◽  
Simona Renna ◽  
Lucia Rossi ◽  
Italo Luciani ◽  
...  

Abstract In case of giant brown fields, a proper water injection management can result in a very complex process, due to the quality and quantity of data to be analysed. Main issue is the understanding of the injected water preferential paths, especially in carbonate environment characterized by strong vertical and areal heterogeneities (karst). A structured workflow is presented to analyze and integrate a massive data set, in order to understand and optimize the water injection scheme. An extensive Production Data Analysis (PDA) has been performed, based on the integration of available geological data (including NMR and Cased Hole Logs), production (allocated rates, Well Tests, PLT), pressure (SBHP, RFT, MDT, ESP) and salinity data. The applied workflow led to build a Fluid Path Conceptual Model (FPCM), an easy but powerful tool to visualize the complex dynamic connections between injectors-producers and aquifer influence areas. Several diagnostic plots were performed to support and validate the main outcomes. On this basis, proper actions were implemented to optimize the current water injection scheme. The workflow was applied on a carbonate giant brown field characterized by three different reservoir members, hydraulically communicating at original conditions, characterized by high vertical heterogeneity and permeability contrast. Moreover, dissolution phenomena, localized in the uppermost reservoir section, led to important permeability enhancement through a wide network of connected vugs, acting as water preferential communication pathways. The geological analysis played a key role to investigate the reservoir water flooding mechanism in dynamic conditions. The water rising mechanism was identified to be driven by the high permeability contrast, hence characterized by lateral independent movements in the different reservoir members. The integrated analysis identified room for optimization of the current water injection strategy. In particular, key factor was the analysis and optimization at block scale, intended as areal and vertical sub-units, as identified by the PDA and visualized through the FPCM. Actions were suggested, including injection rates optimization and the definition of new injections points. A detailed surveillance plan was finally implemented to monitor the effects of the proposed actions on the field performances, proving the robustness of the methodology. Eni workflow for water injection analysis and optimization was previously successfully tested only in sandstone reservoirs. This paper shows the robustness of the methodology also in carbonate environment, where water encroachment is strongly driven by karst network. The result is a clear understanding of the main dynamics in the reservoir, which allows to better tune any action aimed to optimize water injection and increase the value of mature assets.


Sosio e-kons ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 10
Author(s):  
Marlina Nur Lestari ◽  
Nina Herlina ◽  
Risna Kartika

<p><em>The purpose of this research is to know the effect of how much the cost control of production</em><em> </em><em>to operating profit. The method used in this research is the survey method with a descriptive quantitative approach. The data used is the cost of production data and profit data from CV Insan Lestari. with sample pick up used purposive sampling. The Data analysis method in this research is a regression test, correlation test, determination coefficient, and signification test. The result from a statistic test, there known about a positive correlation from cost control to the production with an operating profit, with determination coefficient are 75,1% and 24.9% are factors outside this research. With the signification test, the conclusion is, the cost control had affected the operating profit.</em><em></em></p>


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Shijun Huang ◽  
Jiaojiao Zhang ◽  
Sidong Fang ◽  
Xifeng Wang

In shale gas reservoirs, the production data analysis method is widely used to invert reservoir and fracture parameter, and productivity prediction. Compared with numerical models and semianalytical models, which have high computational cost, the analytical model is mostly used in the production data analysis method to characterize the complex fracture network formed after fracturing. However, most of the current calculation models ignore the uneven support of fractures, and most of them use a single supported fracture model to describe the flow characteristics, which magnifies the role of supported fracture to a certain extent. Therefore, in this study, firstly, the fractures are divided into supported fractures and unsupported fractures. According to the near-well supported fractures and far-well unsupported fractures, the SRV zone is divided into outer SRV and inner SRV. The four areas are characterized by different seepage models, and the analytical solutions of the models are obtained by Laplace transform and inverse transform. Secondly, the material balance pseudotime is introduced to process the production data under the conditions of variable production and variable pressure. The double logarithmic curves of normalized production rate, rate integration, the derivative of the integration, and material balance pseudotime are established, and the parameters are interpreted by fitting the theoretical curve to the measured data. Then, the accuracy of the method is verified by comparison the parameter interpretation results with well test results, and the influence of parameters such as the half-length and permeability of supported and unsupported fractures on gas production is analyzed. Finally, the proposed method is applied to four field cases in southwest China. This paper mainly establishes an analytical method for parameter interpretation after hydraulic fracturing based on the production data analysis method considering the uneven support of fractures, which is of great significance for understanding the mechanism of fracturing stimulation, optimization of fracturing parameters, and gas production forecast.


Sign in / Sign up

Export Citation Format

Share Document