In Situ Upgrading Heavy Oil by Aquathermolytic Treatment under Steam Injection Conditions

Author(s):  
S. Jiang ◽  
X. Liu ◽  
Y. Liu ◽  
L. Zhong
Keyword(s):  
2013 ◽  
Vol 16 (03) ◽  
pp. 333-344 ◽  
Author(s):  
Y.. Hamedi Shokrlu ◽  
T.. Babadagli

Summary Studies on the application of transition-metal catalysts for heavy-oil or bitumen in-situ upgrading were conducted in the absence of a porous medium, mainly measuring the characteristics of heavy oil in reaction with metal ions at static conditions with the help of a magnetic stirrer. Metal species in ionic form are not soluble in oil phase. Therefore, metal particles, as inhomogeneous catalysts, are considered in this paper. Furthermore, dynamic tests in porous media are needed to clarify the injection possibility of the metal particles and their effect on in-situ upgrading of heavy oil. Injection of metal particles may deteriorate the recovery process by damaging porous media because of attractive forces such as van der Waals and electrostatic forces between particles and porous rock. A better understanding of these forces and their importance in the retention of particles is required. In this paper, the catalysis effect of pure nanometer-sized nickel during steam-injection application was compared with that of an industrial catalyst such as micron-sized Raney nickel. The changes in the viscosity, refractive index, and asphaltene content were measured after each test to analyze the catalysis effects. Nickel nanoparticles showed a better catalysis compared with Raney nickel. The approximate optimum concentration of the catalysts was determined. Then, the catalysis effect of nickel nanoparticles was studied in the presence of sandpack as a porous medium. The results showed accelerated catalysis in presence of the sands. Also, nickel nanoparticles improved the oil recovery factor. The next phase of this paper studies the injectivity and transport of nickel particles. The injected suspension was stabilized by use of xanthan gum polymer and ultrasonication. The effect of solution pH, which controls the magnitude of the repulsive electrostatic forces, was clarified. Stabilization of the metal particles’ suspension was studied at different pH values through zeta-potential measurements. Also, the zeta potential of the recovered suspensions was studied to confirm the stability of the suspension during travel through the porous medium. Depending on the size, particles carry different charges and have different settling velocities. Therefore, the stabilization pH and dispersant concentration were different from one sample to another. The results of the injectivity tests confirmed the lower retention and better injectivity of nanoparticles in comparison with micron-sized particles.


Author(s):  
Gilberto Peña Villegas ◽  
María del Carmen Echeverrías

A Giant Heavy Oil Field requires extending and maintaining the production plateau during a continuous period of more than 30 years. In order to increase the revenues of the global project, the construction of Upgrader plant is always considered. Cold production conditions are first, the project has estimated between 10-8% of the STOIIP obtained through cold production but it would not be enough to extend the production plateau. Therefore, later on it will be necessary to apply thermal EOR techniques, as: • Steam Injection: 1-CSS + Steam Flooding, 2-SAGD or HASD • In-situ combustion Aim for this integrated study was to visualize the new facilities design and modification on the exiting cold production facilities to manage the hot production (investments) in function of reservoir/production requirements. The benefit of this integrated study is to value the additional investments in surface facilities required under thermal EOR production to get the global integrated project evaluation.


2014 ◽  
Vol 17 (03) ◽  
pp. 355-364 ◽  
Author(s):  
Yousef Hamedi-Shokrlu ◽  
Tayfun Babadagli

Summary The effect of nickel nanoparticles on in-situ upgrading of heavy oil (HO) during aquathermolysis and the effect of this process on the recovery through cyclic steam injection were studied. High-temperature experiments were conducted with a benchtop reactor to study the kinetics of the reactions among oil, water, and sandstones in the presence and absence of the nickel nanoparticles. Eighteen experiments were conducted at three different temperatures and at three different lengths of time, and the evolved hydrogen sulfide during the reaction was analyzed. The kinetic analysis showed that nickel nanoparticles reduce the activation energy of the reactions corresponding to the generation of hydrogen sulfide by approximately 50%. This reaction was the breakage of C-S bonds in the organosulfur compounds of the HO. The maximal catalysis effect was observed to be at a temperature of approximately 270°C. Also, the simulated-distillation gas-chromatography (GC) analysis of the oil sample, after the aquathermolysis reactions, confirmed the catalysis effect of nickel nanoparticles. According to this analysis, by catalytic process, the concentration of the components lighter than C30 increased whereas the concentration of heavier components decreased. Next, the effect of the catalytic aquathermolysis on the recovery factor of the steam-stimulation technique was studied. The stimulation experiments consisted of three injection/soaking/production phases. The results showed that the nickel nanoparticles increased the recovery factor by approximately 22% when the nanoparticles were injected with a cationic surfactant and xanthan-gum polymer. This increase of recovery was approximately 7% more than that of the experiment conducted with the surfactant and polymer only.


SPE Journal ◽  
2016 ◽  
Vol 22 (01) ◽  
pp. 130-137 ◽  
Author(s):  
Chuan Lu ◽  
Huiqing Liu ◽  
Wei Zhao ◽  
Keqin Lu ◽  
Yongge Liu ◽  
...  

Summary In this study, the effects of viscosity-reducer (VR) concentration, salinity, water/oil ratio (WOR), and temperature on the performance of emulsions are examined on the basis of the selected VR. Different VR-injection scenarios, including single-VR injection and coinjection of steam and VR, are conducted after steamflooding by use of single-sandpack models. The results show that high VR concentration, high WOR, and low salinity are beneficial to form stable oil/water emulsions. The oil recoveries of steamflooding for bitumen and heavy oil are approximately 31 and 52%, respectively. The subsequent VR flooding gives an incremental oil recovery of 5.2 and 6.4% for bitumen and heavy oil, respectively. Flooding by steam/VR induces an additional oil recovery of 8.4–11.0% for bitumen and 12.1% for heavy oil. High-temperature steam favors the peeling off of oil and improving its fluidity, as well as the in-situ emulsions. VR solution is beneficial for the oil dispersion and further viscosity reduction. The coinjection of high-temperature steam and VR is much more effective for additional oil production in viscous-oil reservoirs.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Tamer Moussa ◽  
Mohamed Mahmoud ◽  
Esmail M. A. Mokheimer ◽  
Mohamed A. Habib ◽  
Salaheldin Elkatatny

Determination of optimal well locations plays an important role in the efficient recovery of hydrocarbon resources. However, it is a challenging and complex task. The objective of this paper is to determine the optimal well locations in a heavy oil reservoir under production using a novel recovery process in which steam is generated, in situ, using thermochemical reactions. Self-adaptive differential evolution (SaDE) and particle swarm optimization (PSO) methods are used as the global optimizer to find the optimal configuration of wells that will yield the highest net present value (NPV). This is the first known application, where SaDE and PSO methods are used to optimize well locations in a heavy oil reservoir that is recovered by injecting steam generated in situ using thermo-chemical reactions. Comparison analysis between the two proposed optimization techniques is introduced. On the other hand, laboratory experiments were performed to confirm the heavy oil production by thermochemical means. CMG STARS simulator is utilized to simulate reservoir models with different well configurations. The experimental results showed that thermochemicals, such as ammonium chloride along with sodium nitrate, can be used to generate in situ thermal energy, which efficiently reduces heavy-oil viscosity. Comparison of results is made between the NPV achieved by the well configuration proposed by the SaDE and PSO methods. The results showed that the optimization using SaDE resulted in 15% increase in the NPV compared to that of the PSO after 10 years of production under in situ steam injection process using thermochemical reactions.


Fuel ◽  
2017 ◽  
Vol 187 ◽  
pp. 417-428 ◽  
Author(s):  
A. Mohsenzadeh ◽  
Y. Al-Wahaibi ◽  
R. Al-Hajri ◽  
B. Jibril ◽  
N. Mosavat

2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Tamer Moussa ◽  
Mohamed Mahmoud ◽  
Esmail M. A. Mokheimer ◽  
Dhafer Al-Shehri ◽  
Shirish Patil

This paper introduces a novel approach to generate downhole steam using thermochemical reactions to overcome the challenges associated with heavy oil resources. The procedure developed in this paper is applied to a heavy oil reservoir, which contains heavy oil (12–23 API) with an estimated range of original oil in place (OOIP) of 13–25 billion barrels while its several technical challenges are limiting its commercial development. One of these challenges is the overlying 1800–2000-ft thick permafrost layer, which causes significant heat losses when steam is injected from the surface facilities. The objective of this research is to conduct a feasibility study on the application of the new approach in which the steam is generated downhole using the thermochemical reaction (SGT) combined with steam-assisted gravity drainage (SAGD) to recover heavy oil from the reservoir. A numerical simulation model for a heavy oil reservoir is built using a CMG-STARS simulator, which is then integrated with a matlab framework to study different recovery strategies on the project profitability. The design and operational parameters studied and optimized in this paper involve (1) well configurations and locations and (2) steam injection rate and quality as well as a steam trap in SAGD wells. The results show that the in situ SGT is a successful approach to recover heavy oil from the reservoir, and it yields high-project profitability. The main reason for this outperformance is the ability of SGT to avoid the significant heat losses and associated costs associated with the surface steam injection.


Sign in / Sign up

Export Citation Format

Share Document