scholarly journals Development of microsatellite markers for the Japanese endemic conifer Thuja standishii and transfer to other East Asian species

2019 ◽  
Author(s):  
James Raymond Peter Worth ◽  
K. S. Chang ◽  
Y.-H. Ha ◽  
Aili Qin

Abstract Objective: Design polymorphic microsatellite loci that will be useful for studies of the genetic diversity, structure and reproduction in the Japanese endemic conifer Thuja standishii and test the transferability of these loci to the two other East Asian species, T. sutchuenensis and T. koraiensis . Results: Fifteen loci were developed which displayed 3 to 21 alleles per locus (average = 9.2) among 97 samples from three populations of T. standishii . Observed heterozygosity for all samples varied between 0.33-0.75 (average 0.54) while expected heterozygosity values were higher with an average over the 15 loci of 0.62 (0.37-0.91). Low multi-locus probability of identity values (< 0.00001) indicate that these markers will be effective for identifying individuals derived from clonal reproduction. All 15 loci amplified in 13 samples of T. sutchuenensis , the sister species of T. standishii , with 1 to 11 alleles per locus (average = 4.33) while 13 loci amplified in four samples of the more distantly related T. koraiensis with 1 to 5 alleles per locus (average = 2.15).

2019 ◽  
Author(s):  
James Raymond Peter Worth ◽  
K. S. Chang ◽  
Y.-H. Ha ◽  
Aili Qin

Abstract Objective: Design polymorphic microsatellite loci that will be useful for studies of the genetic diversity, structure and reproduction in the Japanese endemic conifer Thuja standishii and test the transferability of these loci to the two other East Asian species, T. sutchuenensis and T. koraiensis . Results: Fifteen loci were developed which displayed 3 to 21 alleles per locus (average = 9.2) among 97 samples from three populations of T. standishii . Observed heterozygosity for all samples varied between 0.33-0.75 (average 0.54) while expected heterozygosity values were higher with an average over the 15 loci of 0.62 (0.37-0.91). Low multi-locus probability of identity values (< 0.00001) indicate that these markers will be effective for identifying individuals derived from clonal reproduction. All 15 loci amplified in 13 samples of T. sutchuenensis , the sister species of T. standishii , with 1 to 11 alleles per locus (average = 4.33) while 13 loci amplified in four samples of the more distantly related T. koraiensis with 1 to 5 alleles per locus (average = 2.15).


2019 ◽  
Author(s):  
James Raymond Peter Worth ◽  
K. S. Chang ◽  
Y.-H. Ha ◽  
Aili Qin

Abstract Objective Design polymorphic microsatellite loci that will be useful for studies of the genetic diversity, structure and reproduction in the Japanese endemic conifer Thuja standishii and test the transferability of these loci to the two other East Asian species, T. sutchuenensis and T. koraiensis. Results Fifteen loci were developed which displayed 3 to 21 alleles per locus (average = 9.2) among 97 samples from three populations of T. standishii . Observed heterozygosity for all samples varied between 0.33-0.75 (average 0.54) while expected heterozygosity values were higher with an average over the 15 loci of 0.62 (0.37-0.91). Low multi-locus probability of identity values (< 0.00001) indicate that these markers will be effective for identifying individuals derived from clonal reproduction. All 15 loci amplified in T. sutchuenensis, the sister species of T. standishii, with 1 to 11 alleles per locus (average = 4.33) while 13 loci amplified in the more distantly related T. koraiensis with 1 to 5 alleles per locus (average = 2.15).


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
James R. P. Worth ◽  
K. S. Chang ◽  
Y.-H. Ha ◽  
Aili Qin

Abstract Objective Design polymorphic microsatellite loci that will be useful for studies of the genetic diversity, gene-flow and reproduction in the Japanese endemic conifer Thuja standishii and test the transferability of these loci to the two other East Asian species, T. sutchuenensis and T. koraiensis. Results Fifteen loci were developed which displayed 3 to 21 alleles per locus (average = 9.2) among 97 samples from three populations of T. standishii. Observed heterozygosity for all samples varied between 0.33 and 0.75 (average = 0.54) while expected heterozygosity values were higher with an average over the 15 loci of 0.62 (0.37–0.91). Low multi-locus probability of identity values (< 0.00002) indicate that these markers will be effective for identifying individuals derived from clonal reproduction. All 15 loci amplified in 13 samples of T. sutchuenensis, the sister species of T. standishii, with 1 to 11 alleles per locus (average = 4.33) while 13 loci amplified in four samples of the more distantly related T. koraiensis with 1 to 5 alleles per locus (average = 2.15).


2016 ◽  
Author(s):  
Wen Song ◽  
Dongmei Zhu ◽  
Yefeng Lv ◽  
Weimin Wang

Megalobrama pellegrini is one of the economically important freshwater fish in China. Here, we developed 29 polymorphic microsatellite loci of M. pellegrini. The number of alleles (Na), effective number of alleles (Ne), observed heterozygosity (HO), expected heterozygosity (HE) and polymorphic information content (PIC) ranged from 3 to 11 (mean±SD 5.4828±1.9571), 2.8708 to 9.6257 (mean±SD 5.0865±1.6681), 0.4333 to 0.9333 (mean±SD 0.7874±0.1213), 0.6627 to 0.9113 (mean±SD 0.7946±0.0751) and 0.5785 to 0.8868 (mean±SD 0.7439±0.0950), respectively. Cross-species amplification was successful at most loci for related species such as M. amblycephala, M. hoffmanni, M. skolkovii and Parabramis pekinensis. The transferability rate of the 29 polymorphic microsatellite markers in M. amblycephala, M. hoffmanni, M. skolkovii and P. pekinensis were 96.55%, 86.21%, 86.21% and 75.86%, respectively. These polymorphic microsatellites are not only useful in genetic study and conservation of M. pellegrini, but also an effective tool for identifying the related species. We could use 5 microsatellite markers (HHF-63, HHF-104, HHF-113, HHF-148, HHF-163) to distinguish the 5 species.


Sociobiology ◽  
2017 ◽  
Vol 64 (3) ◽  
pp. 352 ◽  
Author(s):  
Yu-Lei Dang ◽  
Hong-Gui Zhang ◽  
Yu-Feng Meng ◽  
Min Zhang ◽  
Sha Zhao ◽  
...  

We isolated 15 and 18 highly polymorphic genomic microsatellite markers from two subterranean termites, Reticulitermes aculabialis and R. labralis, respectively. A total of 53 alleles were detected in 15 microsatellite loci of R. aculabialis, and the alleles were 3.533±1.302 (mean±SD), while the corresponding data of R. labralis were 115 detected alleles in 18 microsatellite loci with 6.389±1.754 alleles. The observed and expected heterozygosity was 0.496±0.236 and 0.564±0.125 in R. aculabialis, and 0.368±0.263 and 0.702±0.115 in R. labralis, respectively. Seven loci were highly polymorphic (PIC>0.5) in R. aculabialis, and 15 loci were highly polymorphic (PIC>0.5) in R. labralis. All loci showed Hardy–Weinberg equilibrium. These polymorphic markers provide useful tools for population genetic and breeding system studies of subterranean termites.


2016 ◽  
Vol 52 ◽  
pp. 166-171
Author(s):  
V. V. Dzitsiuk ◽  
S. G. Kruhlyk ◽  
V. G. Spyrydonov

Modern methods of breeding dogs are based on getting of stable phenotypic uniformity by using close inbreeding or breeding by one line, but such strategy leads to a loss of genetic diversity, and as a result there are genetic defects in breeds which have no external manifestations or manifest in adulthood of dogs and are transmitted from generation to generation. Therefore, to prevent use of dogs with genetic abnormalities in breeding, and to develop standards for a breed and make an accurate pedigree, must carry out the genetic evaluation of animals. One of the modern tools for dogs’ genetic evaluation is DNA-testing using microsatellite loci permitting to match the parental couple effectively, identify (to certify) animals, undertake a comprehensive assessment for heterozygous and homozygous genotypes in populations, permitted for use in the selection process, and illustrate clearly the impact of artificial selection on the genetic characteristics of breeds. The study was conducted in Ukrainian Laboratory of Quality and Safety of Agricultural Products in Department of Molecular Biology Research. For the genetic analysis 42 German Shepherd dogs, used for breeding in kennels of Ukrainian Kennel Union (UKU), were selected. The material for the research was DNA isolated from dogs’ buccal epithelium cells and blood. Genomic DNA was extracted using a standard set of reagents for DNA isolation. Level of theoretically expected heterozygosity (Hexp) varied between 0.385 (PEZ1) to 0.835 (PEZ8). On average theoretically expected heterozygosity with coefficient of 0.657 had not significant advantage over value of actual heterozygosity (0.629), it also shows that the status of the sample of dogs is close to balance. The same is observed in actual and expected heterozygosity for PEZ 6 (0.629) and PEZ 8 (0.657) loci, which also shows the balance. For FHC2010 loci actual heterozygosity is higher than expected, indicating increasing the number of heterozygous individuals. For FHC2054 locus, by contrast, theoretically expected heterozygosity (0.670) dominates the actual (0.429), indicating the lack of heterozygous genotypes in this micropopulation. The value of PIC (polymorphism information content) of the analysed loci ranged from 0.325 to 0.740 with average value 0.574. PEZ6, PEZ8, FHC 2010 and FHC 2054 loci optimally meets their suitability for genetic certification of genotypes because their frequency varies from 0.587 to 0.740. The reduced average index of polymorphism for PEZ1 locus with coefficient of 0.325 confirmed the insufficient level of its polymorphism for full genetic evaluation of the micropopulation of German Shepherd dogs (PIC < 0.500), as confirmed by Chinese researcher J.-H. Ye, according to his data PIC value for PEZ1 locus was 0,320, which correlates with our results. And PIC value for PEZ8 locus was 0.740 in our studies, whereas according to J.-H. Ye – 0,720, which, by contrast, indicates high polymorphism and confirms the effectiveness of its use in genotyping of dogs. Probability of exclusion of accidental allele coincidence (PE), which is 0.675 on average, indicates a lack of the number and informativeness of the selected microsatellite markers for German Shepherd as in this case a combined probability (CPE) of accidental allele coincidence is 0.933886 or 93.3%. The chosen microsatellite loci to study the genetic structure of the German Shepherd dog population, show a sufficiently high informativeness of chosen system of molecular genetic DNA markers. However, there is the need for using additional microsatellite markers which will increase the combined probability of accidental allele coincidence (CPE) from 93.3% to 99.9%. The analysis of heterozygosity is important in studying the dynamics of genetic processes in populations, because heterozygosity has an effect on many factors, including mutations, selection, non-random mating, genetic drift, etc., so continuous monitoring of genetic diversity is required for their timely identification and development of measures to improve breeding work on biodiversity in different dog breeds.


2017 ◽  
Vol 9 (2) ◽  
pp. 209-213
Author(s):  
Elizabeta MISKSOKA-MILEVSKA ◽  
Zoran T. POPOVSKI ◽  
Tome NESTOROVSKI

The microsatellites are specific for each individual genome or species. In order to evaluate the genetic diversity and the relationships within the genus Lycopersicon, microsatellites markers were used. The main objective of this study was to determine the usefulness of the locus LE21085 in the genetic differentiation among six morphologically different tomato varieties of Lycopersicon esculentum Mill. (var. grandifolium subsp. cultum; var. cerasiforme - red and yellow, var. pruniforme, var. pyriforme subsp. subspontaneum and var. racemigerum subsp. spontaneum). For the microsatellites locus LE21085 were detected two alleles in all estimated tomato varieties, that differed by one base pair (122 and 123 bp). The biggest allele frequency was found for the allelic variant of 122 bp, and its values were: 0.8462 for L. esculentum subsp. subspontaneum var. cerasiforme (red), 0.6923 for L. esculentum subsp. subspontaneum var. cerasiforme (yellow), 0.5769 for L. esculentum subsp. cultum var. grandifolium, 0.6923 for L. esculentum subsp. subspontaneum var. pruniforme, 0.6154 for L. esculentum subsp. subspontaneum var. pyriforme and 0.8077 for L. esculentum subsp. spontaneum var. racemigerum. The average of observed heterozygosity for the locus LE21085 (Ho = 0.5641) was higher than average expected heterozygosity (He = 0.4158). The average PIC value for the locus LE21085 was 0.3294 and it was classified as a modest informative markers. From the obtained results it can be concluded that locus LE21085 could be used in genetic differentiation of tomato varieties, but in combination with other polymorphic microsatellite loci.


Author(s):  
Wen Song ◽  
Dongmei Zhu ◽  
Yefeng Lv ◽  
Weimin Wang

Megalobrama pellegrini is one of the economically important freshwater fish in China. Here, we developed 29 polymorphic microsatellite loci of M. pellegrini. The number of alleles (Na), effective number of alleles (Ne), observed heterozygosity (HO), expected heterozygosity (HE) and polymorphic information content (PIC) ranged from 3 to 11 (mean±SD 5.4828±1.9571), 2.8708 to 9.6257 (mean±SD 5.0865±1.6681), 0.4333 to 0.9333 (mean±SD 0.7874±0.1213), 0.6627 to 0.9113 (mean±SD 0.7946±0.0751) and 0.5785 to 0.8868 (mean±SD 0.7439±0.0950), respectively. Cross-species amplification was successful at most loci for related species such as M. amblycephala, M. hoffmanni, M. skolkovii and Parabramis pekinensis. The transferability rate of the 29 polymorphic microsatellite markers in M. amblycephala, M. hoffmanni, M. skolkovii and P. pekinensis were 96.55%, 86.21%, 86.21% and 75.86%, respectively. These polymorphic microsatellites are not only useful in genetic study and conservation of M. pellegrini, but also an effective tool for identifying the related species. We could use 5 microsatellite markers (HHF-63, HHF-104, HHF-113, HHF-148, HHF-163) to distinguish the 5 species.


Author(s):  
P. Veeramani ◽  
R. Prabakaran ◽  
S.N. Sivaselvam ◽  
T. Sivakumar ◽  
S.T. Selvan ◽  
...  

Background: The variety of indigenous duck germplasm contribute maximum to the poultry industry in India, besides chicken population. In southern part of India, the available duck genetic resource, particularly Arni ducks (comprises of Sanyasi and Keeri ducks) of Tamil Nadu, has its own characteristics with innate potentiality of higher productivity without any input system of management. Genetic characterization and diversity of indigenous duck genetic resources has not been properly studied. In the present study, the genetic diversity of Arni ducks with other indigenous and exotic duck germplasm were analysed with microsatellite markers. Method: Genomic DNA was isolated from the blood samples of six duck populations. Molecular characterization was carried out with duck specific FAO recommended microsatellite markers. The genotyping of ducks was done based on the size of 4324 PCR amplicons of 23 microsatellite loci, which were subjected to capillary electrophoresis using automatic sequencer.Result: A total of 222 alleles in six duck populations across 23 microsatellite loci with a mean of 9.65 ± 0.95 alleles were found. Kuttanad duck variety had the highest number of alleles (139) followed by Sanyasi (136), Keeri (129), Muscovy (118), Assam (91) and White Pekin (78) ducks. The mean observed number of alleles was 6.04 ± 0.59, 5.91 ± 0.76, 5.61 ± 3.17, 5.13 ± 0.44, 3.96 ± 0.76 and 3.39 ± 0.40 in Kuttanad, Sanyasi, Keeri, Muscovy, Assam and White Pekin ducks respectively. The overall mean polymorphism information content (PIC) values among the six duck populations was 0.6269. In most of the duck populations, the mean PIC value was more than 0.5 except in Assam (0.4815) and White Pekin (0.3725) ducks. The observed heterozygosity was the highest in Keeri ducks (0.5217) and lowest in White Pekin ducks (0.2766), while, the mean expected heterozygosity was the highest in Sanyasi (0.5628) and lowest in White Pekin (0.4038) ducks. The variations in the observed and expected number of alleles, differences in PIC of various microsatellite loci might be attributed to the genetic variability of the duck populations, number and type of microsatellite primers utilised for analysis and the genetic diversity of the duck breeds under study. Higher FST value indicates the substantial degree of breed differentiation among the studied duck populations.


Sign in / Sign up

Export Citation Format

Share Document