scholarly journals A Life-History Perspective on Sexual Selection in a Polygamous Species

2020 ◽  
Author(s):  
Ke Gao ◽  
Michiel van Wijk ◽  
Zoe Clement ◽  
Martijn Egas ◽  
Astrid Groot

Abstract Background: Ever since Darwin, evolutionary biologists have studied sexual selection driving differences in appearance and behaviour between males and females. An unchallenged paradigm in such studies is that one sex (usually the male) signals its quality as a mate to the other sex (usually the female), who is choosy in accepting a partner. Here, we hypothesize that in polygamous species these roles change dynamically with the mating status of males and females, depending on direct reproductive costs and benefits of multiple matings, and on sperm competition. We test this hypothesis by assessing fitness costs and benefits of multiple matings in both males and females in a polygamous moth species, as in moths not males but females are the signalers and males are the responders. Results: We found that multiple matings confer fitness costs and benefits for both sexes. Specifically, the number of matings did not affect the longevity of males or females, but only 67 % of the males and 14 % of the females mated successfully in all five nights. In addition, the female’s reproductive output increased with multiple matings, although when paired with a new virgin male every night, more than 3 matings decreased her reproductive output, so that the Bateman gradient for females fit a quadratic model better than a linear model. The male’s reproductive success was positively affected by the number of matings and a linear regression line best fit the data. Simulations of the effect of sperm competition showed that increasing last-male paternity increases the steepness of the male Bateman gradient and thus the male’s relative fitness gain from additional mating. Irrespective of last-male paternity value, the female Bateman gradient is steeper than the male one for up to three matings. Conclusion: Our results suggest that choosiness in moths may well change throughout the mating season, with males being more choosy early in the season and females being more choosy after having mated at least three times. This life-history perspective on the costs and benefits of multiple matings for both sexes sheds new light on sexual selection forces acting on sexual signals and responses.

2020 ◽  
Author(s):  
Ke Gao ◽  
Michiel van Wijk ◽  
Zoe Clement ◽  
Martijn Egas ◽  
Astrid Groot

Abstract Background: Ever since Darwin, evolutionary biologists have studied sexual selection driving differences in appearance and behaviour between males and females. An unchallenged paradigm in such studies is that one sex (usually the male) signals its quality as a mate to the other sex (usually the female), who is choosy in accepting a partner. Here, we hypothesize that in polygamous species these roles change dynamically with the mating status of males and females, depending on direct reproductive costs and benefits of multiple matings, and on sperm competition. We test this hypothesis by assessing fitness costs and benefits of multiple matings in both males and females in a polygamous moth species, as in moths not males but females are the signalers and males are the responders. Results: We found that multiple matings confer fitness costs and benefits for both sexes. Specifically, the number of matings did not affect the longevity of males or females, but only 67 % of the males and 14 % of the females mated successfully in all five nights. In addition, the female’s reproductive output increased with multiple matings, although when paired with a new virgin male every night, more than 3 matings decreased her reproductive output, so that the Bateman gradient for females fit a quadratic model better than a linear model. The male’s reproductive success was positively affected by the number of matings and a linear regression line best fit the data. Simulations of the effect of sperm competition showed that increasing last-male paternity increases the steepness of the male Bateman gradient and thus the male’s relative fitness gain from additional mating. Irrespective of last-male paternity value, the female Bateman gradient is steeper than the male one for up to three matings. Conclusion: Our results suggest that choosiness in moths may well change throughout the mating season, with males being more choosy early in the season and females being more choosy after having mated at least three times. This life-history perspective on the costs and benefits of multiple matings for both sexes sheds new light on sexual selection forces acting on sexual signals and responses.


2019 ◽  
Author(s):  
Gao Ke ◽  
Michiel van Wijk ◽  
Zoe Clement ◽  
Martijn Egas ◽  
Astrid Groot

Abstract Background Ever since Darwin, evolutionary biologists have studied sexual selection driving differences in appearance and behaviour between males and females. An unchallenged paradigm in such studies is that one sex (usually the male) signals its quality as a mate to the other sex (usually the female), who is choosy in accepting a partner. Here, we argue that in polygamous species these roles may change dynamically with the mating status of males and females, depending on direct reproductive costs and benefits of multiple matings, and on sperm competition. We test this hypothesis using a polygamous moth species, as in moths not males but females are the signalers and males are the responders. Results We found that multiple matings are beneficial as well as costly for both sexes. Specifically, the number of matings did not affect the longevity of males or females, but when paired with a new virgin mate every night for five nights, only 67% of the males and 14% of the females mated successfully in all five nights. The female’s reproductive output increased with multiple matings, although when paired with a new virgin male every night, additional matings beyond 3 decreased her reproductive output, so that the Bateman gradient for females fit a quadratic model better than a linear model. The male’s reproductive success was positively affected by the number of matings and a linear regression line best fit the data. Simulations of the effect of sperm competition showed that increasing last-male paternity increases the steepness of the male Bateman gradient and thus the male’s relative fitness gain from additional mating. Irrespective of last-male paternity value, the female Bateman gradient is steeper than the male one for up to three matings. Conclusion Our results suggest that choosiness in moths may well change throughout the mating season, with males being more choosy early in the season and females being more choosy after having mated at least three times. This life-history perspective on the costs and benefits of multiple matings for both sexes sheds new light on sexual selection forces acting on sexual signals and responses.


2020 ◽  
Vol 375 (1813) ◽  
pp. 20200062
Author(s):  
Leigh W. Simmons ◽  
Geoff A. Parker ◽  
David J. Hosken

Studies of the yellow dungfly in the 1960s provided one of the first quantitative demonstrations of the costs and benefits associated with male and female reproductive behaviour. These studies advanced appreciation of sexual selection as a significant evolutionary mechanism and contributed to the 1970s paradigm shift toward individual selectionist thinking. Three behaviours in particular led to the realization that sexual selection can continue during and after mating: (i) female receptivity to remating, (ii) sperm displacement and (iii) post-copulatory mate guarding. These behaviours either generate, or are adaptations to sperm competition, cryptic female choice and sexual conflict. Here we review this body of work, and its contribution to the development of post-copulatory sexual selection theory. This article is part of the theme issue ‘Fifty years of sperm competition’.


2020 ◽  
Vol 375 (1813) ◽  
pp. 20200069 ◽  
Author(s):  
Jonathan P. Evans ◽  
Rowan A. Lymbery

Broadcast spawning invertebrates offer highly tractable models for evaluating sperm competition, gamete-level mate choice and sexual conflict. By displaying the ancestral mating strategy of external fertilization, where sexual selection is constrained to act after gamete release, broadcast spawners also offer potential evolutionary insights into the cascade of events that led to sexual reproduction in more ‘derived’ groups (including humans). Moreover, the dynamic reproductive conditions faced by these animals mean that the strength and direction of sexual selection on both males and females can vary considerably. These attributes make broadcast spawning invertebrate systems uniquely suited to testing, extending, and sometimes challenging classic and contemporary ideas in sperm competition, many of which were first captured in Parker's seminal papers on the topic. Here, we provide a synthesis outlining progress in these fields, and highlight the burgeoning potential for broadcast spawners to provide both evolutionary and mechanistic understanding into gamete-level sexual selection more broadly across the animal kingdom. This article is part of the theme issue ‘Fifty years of sperm competition’.


2012 ◽  
Vol 90 (11) ◽  
pp. 1297-1306 ◽  
Author(s):  
Marie-Claude Gagnon ◽  
Pierre Duchesne ◽  
Julie Turgeon

In water striders, the interests of both sexes diverge over the decision to mate, leading to precopulatory sexual conflict. The influence of mating rate and key persistence and resistance traits on reproductive success has seldom been investigated in the context of multiple matings. We used amplified fragment length polymorphism (AFLP) based genetic parentage analyses to estimate mating and reproductive success in Gerris gillettei Lethierry and Severin, 1896, while allowing for free multiple matings. We tested the hypotheses that males should display stronger opportunity for sexual selection and steeper Bateman gradients. In each sex, persistence and resistance traits should also impact mating and reproductive success. Surprisingly, males and females had similarly high and variable effective mating rates (i.e., number of genetic partners), and both sexes produce more offspring when mating with more partners. As predicted, exaggerated persistence traits allowed males to mate with more partners and sire more offspring. However, we found no evidence for an impact of resistance traits for females. The mating environment may have favoured low resistance in females, but high promiscuity can be beneficial for females. This first description of the genetic mating system for a water strider species suggests that the determinants of fitness can be further deciphered using the sexual selection framework.


2013 ◽  
Vol 368 (1613) ◽  
pp. 20120046 ◽  
Author(s):  
Stephen M. Shuster ◽  
William R. Briggs ◽  
Patricia A. Dennis

Multiple mating by females is widely thought to encourage post-mating sexual selection and enhance female fitness. We show that whether polyandrous mating has these effects depends on two conditions. Condition 1 is the pattern of sperm utilization by females; specifically, whether, among females, male mating number, m (i.e. the number of times a male mates with one or more females) covaries with male offspring number, o . Polyandrous mating enhances sexual selection only when males who are successful at multiple mating also sire most or all of each of their mates' offspring, i.e. only when Cov ♂ ( m , o ), is positive. Condition 2 is the pattern of female reproductive life-history; specifically, whether female mating number, m , covaries with female offspring number, o . Only semelparity does not erode sexual selection, whereas iteroparity (i.e. when Cov ♀ ( m , o ), is positive) always increases the variance in offspring numbers among females, which always decreases the intensity of sexual selection on males. To document the covariance between mating number and offspring number for each sex, it is necessary to assign progeny to all parents, as well as identify mating and non-mating individuals. To document significant fitness gains by females through iteroparity, it is necessary to determine the relative magnitudes of male as well as female contributions to the total variance in relative fitness. We show how such data can be collected, how often they are collected, and we explain the circumstances in which selection favouring multiple mating by females can be strong or weak.


2017 ◽  
Author(s):  
Pedro F. Vale ◽  
Vanika Gupta ◽  
Charlotte Stewart ◽  
Samuel S.C. Rund ◽  
Katy Monteith

AbstractViruses are major evolutionary drivers of insect immune systems. Much of our knowledge of insect immune responses derives from experimental infections using the fruit fly Drosophila melanogaster. Most experiments, however, employ lethal pathogen doses through septic injury, frequently overwhelming host physiology. While this approach has revealed a number of immune mechanisms, it is less informative about the fitness costs hosts may experience during infection in the wild. Using both systemic and oral infection routes we find that even apparently benign, sub-lethal infections with the horizontally transmitted Drosophila C Virus (DCV) can cause significant physiological and behavioral morbidity that is relevant for host fitness. We describe DCV-induced effects on fly reproductive output, digestive health, and locomotor activity, and we find that viral morbidity varies according to the concentration of pathogen inoculum, host genetic background and sex. Notably, sub-lethal DCV infection resulted in a significant increase in fly reproduction, but this effect depended on host genotype. We discuss the relevance of sub-lethal morbidity for Drosophila ecology and evolution, and more broadly, we remark on the implications of deleterious and beneficial infections for the evolution of insect immunity.


2013 ◽  
Vol 368 (1613) ◽  
pp. 20120335 ◽  
Author(s):  
Geoff A. Parker ◽  
Tim R. Birkhead

We give a historic overview and critical perspective of polyandry in the context of sexual selection. Early approaches tended to obfuscate the fact that the total matings (copulations) by the two sexes is equal, neglecting female interests and that females often mate with (or receive ejaculates from) more than one male (polyandry). In recent years, we have gained much more insight into adaptive reasons for polyandry, particularly from the female perspective. However, costs and benefits of multiple mating are unlikely to be equal for males and females. These must be assessed for each partner at each potential mating between male i and female j , and will often be highly asymmetric. Interests of i and j may be in conflict, with (typically, ultimately because of primordial sex differences) i benefitting and j losing from mating, although theoretically the reverse can also obtain. Polyandry reduces the sex difference in Bateman gradients, and the probability of sexual conflict over mating by: (i) reducing the potential expected value of each mating to males in inverse proportion to the number of mates per female per clutch, and also often by (ii) increasing ejaculate costs through increased sperm allocation. It can nevertheless create conflict over fertilization and increase conflict over parental investment. The observed mean mating frequency for the population (and hence the degree of polyandry) is likely, at least in part, to reflect a resolution of sexual conflict. Immense diversity exists across and within taxa in the extent of polyandry, and views on its significance have changed radically, as we illustrate using avian polyandry as a case study. Despite recent criticisms, the contribution of the early pioneers of sexual selection, Darwin and Bateman, remains generally valid, and should not, therefore, be negated; as with much in science, pioneering advances are more often amplified and refined, rather than replaced with entirely new paradigms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Judit Mokos ◽  
István Scheuring ◽  
András Liker ◽  
Robert P. Freckleton ◽  
Tamás Székely

AbstractMales and females often display different behaviours and, in the context of reproduction, these behaviours are labelled sex roles. The Darwin–Bateman paradigm argues that the root of these differences is anisogamy (i.e., differences in size and/or function of gametes between the sexes) that leads to biased sexual selection, and sex differences in parental care and body size. This evolutionary cascade, however, is contentious since some of the underpinning assumptions have been questioned. Here we investigate the relationships between anisogamy, sexual size dimorphism, sex difference in parental care and intensity of sexual selection using phylogenetic comparative analyses of 64 species from a wide range of animal taxa. The results question the first step of the Darwin–Bateman paradigm, as the extent of anisogamy does not appear to predict the intensity of sexual selection. The only significant predictor of sexual selection is the relative inputs of males and females into the care of offspring. We propose that ecological factors, life-history and demography have more substantial impacts on contemporary sex roles than the differences of gametic investments between the sexes.


Sign in / Sign up

Export Citation Format

Share Document