scholarly journals Efficient development of practically usable thermo-photo sensitive genic male sterile lines in wheat through doubled haploid breeding

2019 ◽  
Author(s):  
Hongsheng Li ◽  
Shaoxiang Li ◽  
Sedhom Abdelkhalik ◽  
Armaghan Shahzad ◽  
Jian Gu ◽  
...  

Abstract Two-line hybrid wheat system using thermo-photo sensitive genic male sterility (TPSGMS) is now a dominant and promising approach of wheat heterosis utilization in China. However, few TPSGMS lines available for practical application have always been a bottleneck affecting the efficiency of creating hybrids with strong heterosis since its establishment in 1992. This study aimed to improve the efficiency of developing TPSGMS lines by doubled haploid (DH) breeding. F 1 s and selected F 2 and F 3 sterile plants from 8 crosses made with 2 commercial TPSGMS lines K78S and K456S were used to produce DH lines by wheat × maize system. 24 elite sterile lines possessing stable sterility, good outcrossing and yield potentials, resistance to yellow rust and powdery mildew, and desirable plant height (50-60 cm) were obtained within 4 years. 20 out of 24 elite lines that performed stable sterility in tests of two or three years and high outcrossing rate (>70%) under open pollination, will be used for hybrid breeding later. The percentage of selected sterile lines in total tested DH lines produced from filial generations was in the order of F 3 > F 2 > F 1 for sterility, and F 2 > F 3 > F 1 for elite lines in this study, thus producing DHs from F 2 generation appeared to be the better choice considering the balance of overall breeding efficiency and time saving. This study verified that combining DH techniques with conventional breeding would be an efficient strategy for developing practically usable wheat TPSGMS lines, both in number and time saving.

2020 ◽  
Author(s):  
Hongsheng Li ◽  
Shaoxiang Li ◽  
Sedhom Abdelkhalik ◽  
Armaghan Shahzad ◽  
Jian Gu ◽  
...  

Abstract Background: Two-line hybrid wheat system using thermo-photo sensitive genic male sterility (TPSGMS) is now a dominant and promising approach of wheat heterosis utilization in China. However, during past twenty years only several TPSGMS lines have been capable of practical application in hybrid wheat breeding and production, which reduced the opportunities and efficiency of creating hybrids with strong heterosis. Introducing doubled haploid (DH) breeding could be a helpful strategy to efficiently develop practically usable TPSGMS lines. Results: F 1 s and selected F 2 and F 3 sterile plants from eight crosses made from two commercial TPSGMS lines were used to produce DH lines by using the wheat × maize system. Twenty four elite sterile lines possessing stable sterility, good outcrossing and yield potential, resistance to yellow rust and powdery mildew, and desirable plant height (50-60 cm) were obtained within 4 years through at least one year evaluation. Twenty from twenty four elite lines showed stable sterility in repeated tests of two or three years, will be selected for hybrid breeding. The percentage of elite lines within total tested DH lines produced from filial generations was in the order of F 2 > F 3 > F 1 in this study. Conclusions: Our study shows that DH breeding is more efficient for the selection of traits controlled by recessive gene(s) compared with conventional breeding, especially for the sterility of TPSGMS wheat. Coupling DH techniques with conventional breeding would be an efficient strategy for developing practically usable wheat TPSGMS lines in respect to number and saving time, which is helpful for further improving the efficiency of wheat hybrid breeding. Producing DHs from F 2 generation appeared to be the better choice considering the balance of shortening breeding time and overall breeding efficiency.


2020 ◽  
Author(s):  
Hongsheng Li ◽  
Shaoxiang Li ◽  
Sedhom Abdelkhalik ◽  
Armaghan Shahzad ◽  
Jian Gu ◽  
...  

Abstract Background: Two-line hybrid wheat system using thermo-photo sensitive genic male sterility (TPSGMS) is currently the most promising approach for wheat heterosis utilization in China. However, during past twenty years only few TPSGMS lines were developed in hybrid wheat breeding, which has been the main limiting factor to create heterotic hybrids. Application of doubled haploid (DH) breeding provides a useful strategy to efficiently develop practically usable TPSGMS lines. Results: F1s and selected F2 and F3 sterile plants of eight crosses made from two commercial TPSGMS lines were used to produce DH lines. We developed a total of 24 elite DH sterile lines with stable sterility, good outcrossing and yield potential, resistance to yellow rust and powdery mildew, as well as desirable plant height (50-60 cm). These DH lines were developed within 4 years through at least one year of evaluation. The stability of male sterility was confirmed for most (20/24) of these elite DH sterile lines by multiple tests in two or three years. These lines are expected to be used in hybrid wheat breeding. The percentage of elite lines developed from the tested DH lines produced from filial generations was in the order of F2 > F3 > F1. Conclusions: We demonstrate that coupling DH techniques with conventional breeding is an efficient strategy for accelerating the development of more practical wheat TPSGMS lines. Generation of DHs from F2 generation appeared to be the better choice considering the balance of shortening breeding time and overall breeding efficiency.


2020 ◽  
Author(s):  
Hongsheng Li ◽  
Shaoxiang Li ◽  
Sedhom Abdelkhalik ◽  
Armaghan Shahzad ◽  
Jian Gu ◽  
...  

Abstract Background: Two-line hybrid wheat system using thermo-photo sensitive genic male sterility (TPSGMS) is currently the most promising approach for wheat heterosis utilization in China. However, during past twenty years only few TPSGMS lines were developed in hybrid wheat breeding, which has been the main limiting factor to create heterotic hybrids. Application of doubled haploid (DH) breeding provides a useful strategy to efficiently develop practically usable TPSGMS lines.Results: F1s and selected F2 and F3 sterile plants of eight crosses made from two commercial TPSGMS lines were used to produce DH lines. We developed a total of 24 elite DH sterile lines with stable sterility, good outcrossing and yield potential, resistance to yellow rust and powdery mildew, as well as desirable plant height (50-60 cm). These DH lines were developed within 4 years through at least one year of evaluation. The stability of male sterility was confirmed for most (20/24) of these elite DH sterile lines by multiple tests in two or three years. These lines are expected to be used in hybrid wheat breeding. The percentage of elite lines developed from the tested DH lines produced from filial generations was in the order of F2 > F3 > F1.Conclusions: We demonstrate that coupling DH techniques with conventional breeding is an efficient strategy for accelerating the development of more practical wheat TPSGMS lines. Generation of DHs from F2 generation appeared to be the better choice considering the balance of shortening breeding time and overall breeding efficiency.


2020 ◽  
Author(s):  
Hongsheng Li ◽  
Shaoxiang Li ◽  
Sedhom Abdelkhalik ◽  
Armaghan Shahzad ◽  
Jian Gu ◽  
...  

Abstract Background: Two-line hybrid wheat system using thermo-photo sensitive genic male sterility (TPSGMS) is currently the most promising approach for wheat heterosis utilization in China. However, during past twenty years only few TPSGMS lines were developed in hybrid wheat breeding, which has been the main limiting factor to create heterotic hybrids. Application of doubled haploid (DH) breeding provides a useful strategy to efficiently develop practically usable TPSGMS lines.Results: F1s and selected F2 and F3 sterile plants of eight crosses made from two commercial TPSGMS lines were used to produce DH lines. We developed a total of 24 elite DH sterile lines with stable sterility, good outcrossing and yield potential, resistance to yellow rust and powdery mildew, as well as desirable plant height (50-60 cm). These DH lines were developed within 4 years through at least one year of evaluation. The stability of male sterility was confirmed for most (20/24) of these elite DH sterile lines by multiple tests in two or three years. These lines are expected to be used in hybrid wheat breeding. The percentage of elite lines developed from the tested DH lines produced from filial generations was in the order of F2 > F3 > F1.Conclusions: We demonstrate that coupling DH techniques with conventional breeding is an efficient strategy for accelerating the development of more practical wheat TPSGMS lines. Generation of DHs from F2 generation appeared to be the better choice considering the balance of shortening breeding time and overall breeding efficiency.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Hongsheng Li ◽  
Shaoxiang Li ◽  
Sedhom Abdelkhalik ◽  
Armaghan Shahzad ◽  
Jian Gu ◽  
...  

Author(s):  
Junping Yu ◽  
Guolong Zhao ◽  
Wei Li ◽  
Ying Zhang ◽  
Peng Wang ◽  
...  

Abstract Key message Identification and functional analysis of the male sterile gene MS6 in Glycine max. Abstract Soybean (Glycine max (L.) Merr.) is an important crop providing vegetable oil and protein. The male sterility-based hybrid breeding is a promising method for improving soybean yield to meet the globally growing demand. In this research, we identified a soybean genic male sterile locus, MS6, by combining the bulked segregant analysis sequencing method and the map-based cloning technology. MS6, highly expressed in anther, encodes an R2R3 MYB transcription factor (GmTDF1-1) that is homologous to Tapetal Development and Function 1, a key factor for anther development in Arabidopsis and rice. In male sterile ms6 (Ames1), the mutant allele contains a missense mutation, leading to the 76th leucine substituted by histidine in the DNA binding domain of GmTDF1-1. The expression of soybean MS6 under the control of the AtTDF1 promoter could rescue the male sterility of attdf1 but ms6 could not. Additionally, ms6 overexpression in wild-type Arabidopsis did not affect anther development. These results evidence that GmTDF1-1 is a functional TDF1 homolog and L76H disrupts its function. Notably, GmTDF1-1 shows 92% sequence identity with another soybean protein termed as GmTDF1-2, whose active expression also restored the fertility of attdf1. However, GmTDF1-2 is constitutively expressed at a very low level in soybean, and therefore, not able to compensate for the MS6 deficiency. Analysis of the TDF1-involved anther development regulatory pathway showed that expressions of the genes downstream of TDF1 are significantly suppressed in ms6, unveiling that GmTDF1-1 is a core transcription factor regulating soybean anther development.


2021 ◽  
Vol 22 (13) ◽  
pp. 6877
Author(s):  
Yannan Shi ◽  
Yao Li ◽  
Yongchao Guo ◽  
Eli James Borrego ◽  
Zhengyi Wei ◽  
...  

Recently, crop breeders have widely adopted a new biotechnology-based process, termed Seed Production Technology (SPT), to produce hybrid varieties. The SPT does not produce nuclear male-sterile lines, and instead utilizes transgenic SPT maintainer lines to pollinate male-sterile plants for propagation of nuclear-recessive male-sterile lines. A late-stage pollen-specific promoter is an essential component of the pollen-inactivating cassette used by the SPT maintainers. While a number of plant pollen-specific promoters have been reported so far, their usefulness in SPT has remained limited. To increase the repertoire of pollen-specific promoters for the maize community, we conducted a comprehensive comparative analysis of transcriptome profiles of mature pollen and mature anthers against other tissue types. We found that maize pollen has much less expressed genes (>1 FPKM) than other tissue types, but the pollen grain has a large set of distinct genes, called pollen-specific genes, which are exclusively or much higher (100 folds) expressed in pollen than other tissue types. Utilizing transcript abundance and correlation coefficient analysis, 1215 mature pollen-specific (MPS) genes and 1009 mature anther-specific (MAS) genes were identified in B73 transcriptome. These two gene sets had similar GO term and KEGG pathway enrichment patterns, indicating that their members share similar functions in the maize reproductive process. Of the genes, 623 were shared between the two sets, called mature anther- and pollen-specific (MAPS) genes, which represent the late-stage pollen-specific genes of the maize genome. Functional annotation analysis of MAPS showed that 447 MAPS genes (71.7% of MAPS) belonged to genes encoding pollen allergen protein. Their 2-kb promoters were analyzed for cis-element enrichment and six well-known pollen-specific cis-elements (AGAAA, TCCACCA, TGTGGTT, [TA]AAAG, AAATGA, and TTTCT) were found highly enriched in the promoters of MAPS. Interestingly, JA-responsive cis-element GCC box (GCCGCC) and ABA-responsive cis-element-coupling element1 (ABRE-CE1, CCACC) were also found enriched in the MAPS promoters, indicating that JA and ABA signaling likely regulate pollen-specific MAPS expression. This study describes a robust and straightforward pipeline to discover pollen-specific promotes from publicly available data while providing maize breeders and the maize industry a number of late-stage (mature) pollen-specific promoters for use in SPT for hybrid breeding and seed production.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aakanksha ◽  
Satish Kumar Yadava ◽  
Bal Govind Yadav ◽  
Vibha Gupta ◽  
Arundhati Mukhopadhyay ◽  
...  

The exploitation of heterosis through hybrid breeding is one of the major breeding objectives for productivity increase in crop plants. This research analyzes the genetic basis of heterosis in Brassica juncea by using a doubled haploid (DH) mapping population derived from F1 between two heterotic inbred parents, one belonging to the Indian and the other belonging to the east European gene pool, and their two corresponding sets of backcross hybrids. An Illumina Infinium Brassica 90K SNP array-based genetic map was used to identify yield influencing quantitative trait loci (QTL) related to plant architecture, flowering, and silique- and seed-related traits using five different data sets from multiple trials, allowing the estimation of additive and dominance effects, as well as digenic epistatic interactions. In total, 695 additive QTL were detected for the 14 traits in the three trials using five data sets, with overdominance observed to be the predominant type of effect in determining the expression of heterotic QTL. The results indicated that the design in the present study was efficient for identifying common QTL across multiple trials and populations, which constitute a valuable resource for marker-assisted selection and further research. In addition, a total of 637 epistatic loci were identified, and it was concluded that epistasis among loci without detectable main effects plays an important role in controlling heterosis in yield of B. juncea.


2007 ◽  
Vol 55 (3) ◽  
pp. 273-282
Author(s):  
S. Sharma ◽  
H. Chaudhary

Seventy-eight doubled haploid (DH) lines, derived from 21 elite and diverse winter × spring wheat F 1 hybrids, following the wheat × maize system, were screened along with the parental genotypes under in vitro and in vivo conditions for cold tolerance. Under in vitro conditions, the 2,3,5-triphenyl tetrazolium chloride (TTC) test was used to characterize the genotypes for cold tolerance. Based on the TTC test, only one doubled haploid, DH 69, was characterized as cold-tolerant, seven DH and five winter wheat parents were moderately tolerant, while the rest were susceptible. Analysis of variance under in vivo conditions also indicated the presence of sufficient genetic variability among the genotypes (DH lines + parents) for all the yield-contributing traits under study. The correlation and path analysis studies underlined the importance of indirect selection for tillers per plant, harvest index and grains per spike in order to improve grain yield. It was also concluded that selection should not be practised for grain weight per spike as it would adversely affect the grain yield per plant. When comparing the field performance of the genotypes with the in vitro screening parameters, it was concluded that in addition to the TTC test, comprising a single parameter, other physiological and biochemical in vitro parameters should be identified, which clearly distinguish between cold-tolerant and susceptible genotypes and also correlate well with their performance under field conditions.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yanyan Sun ◽  
Dongsuo Zhang ◽  
Zhenzhen Wang ◽  
Yuan Guo ◽  
Xiaomin Sun ◽  
...  

Abstract Background Photoperiod and/or thermo-sensitive male sterility is an effective pollination control system in crop two-line hybrid breeding. We previously discovered the spontaneous mutation of a partially male sterile plant and developed a thermo-sensitive genic male sterile (TGMS) line 373S in Brassica napus L. The present study characterized this TGMS line through cytological observation, photoperiod/ temperature treatments, and genetic investigation. Results Microscopic observation revealed that the condensed cytoplasm and irregular exine of microspores and the abnormal degradation of tapetum are related to pollen abortion. Different temperature and photoperiod treatments in field and growth cabinet conditions indicated that the fertility alteration of 373S was mainly caused by temperature changes. The effects of photoperiod and interaction between temperature and photoperiod were insignificant. The critical temperature leading to fertility alteration ranged from 10 °C (15 °C/5 °C) to 12 °C (17 °C/7 °C), and the temperature-responding stage was coincident with anther development from pollen mother cell formation to meiosis stages. Genetic analysis indicated that the TGMS trait in 373S was controlled by one pair of genes, with male sterility as the recessive. Multiplex PCR analysis revealed that the cytoplasm of 373S is pol type. Conclusions Our study suggested that the 373S line in B. napus has a novel thermo-sensitive gene Bnmst1 in Pol CMS cytoplasm background, and its fertility alteration is mainly caused by temperature changes. Our results will broaden the TGMS resources and lay the foundation for two-line hybrid breeding in B. napus.


Sign in / Sign up

Export Citation Format

Share Document