scholarly journals Efficient development of practically usable thermo-photo sensitive genic male sterile lines in wheat through doubled haploid breeding

2020 ◽  
Author(s):  
Hongsheng Li ◽  
Shaoxiang Li ◽  
Sedhom Abdelkhalik ◽  
Armaghan Shahzad ◽  
Jian Gu ◽  
...  

Abstract Background: Two-line hybrid wheat system using thermo-photo sensitive genic male sterility (TPSGMS) is now a dominant and promising approach of wheat heterosis utilization in China. However, during past twenty years only several TPSGMS lines have been capable of practical application in hybrid wheat breeding and production, which reduced the opportunities and efficiency of creating hybrids with strong heterosis. Introducing doubled haploid (DH) breeding could be a helpful strategy to efficiently develop practically usable TPSGMS lines. Results: F 1 s and selected F 2 and F 3 sterile plants from eight crosses made from two commercial TPSGMS lines were used to produce DH lines by using the wheat × maize system. Twenty four elite sterile lines possessing stable sterility, good outcrossing and yield potential, resistance to yellow rust and powdery mildew, and desirable plant height (50-60 cm) were obtained within 4 years through at least one year evaluation. Twenty from twenty four elite lines showed stable sterility in repeated tests of two or three years, will be selected for hybrid breeding. The percentage of elite lines within total tested DH lines produced from filial generations was in the order of F 2 > F 3 > F 1 in this study. Conclusions: Our study shows that DH breeding is more efficient for the selection of traits controlled by recessive gene(s) compared with conventional breeding, especially for the sterility of TPSGMS wheat. Coupling DH techniques with conventional breeding would be an efficient strategy for developing practically usable wheat TPSGMS lines in respect to number and saving time, which is helpful for further improving the efficiency of wheat hybrid breeding. Producing DHs from F 2 generation appeared to be the better choice considering the balance of shortening breeding time and overall breeding efficiency.

2020 ◽  
Author(s):  
Hongsheng Li ◽  
Shaoxiang Li ◽  
Sedhom Abdelkhalik ◽  
Armaghan Shahzad ◽  
Jian Gu ◽  
...  

Abstract Background: Two-line hybrid wheat system using thermo-photo sensitive genic male sterility (TPSGMS) is currently the most promising approach for wheat heterosis utilization in China. However, during past twenty years only few TPSGMS lines were developed in hybrid wheat breeding, which has been the main limiting factor to create heterotic hybrids. Application of doubled haploid (DH) breeding provides a useful strategy to efficiently develop practically usable TPSGMS lines. Results: F1s and selected F2 and F3 sterile plants of eight crosses made from two commercial TPSGMS lines were used to produce DH lines. We developed a total of 24 elite DH sterile lines with stable sterility, good outcrossing and yield potential, resistance to yellow rust and powdery mildew, as well as desirable plant height (50-60 cm). These DH lines were developed within 4 years through at least one year of evaluation. The stability of male sterility was confirmed for most (20/24) of these elite DH sterile lines by multiple tests in two or three years. These lines are expected to be used in hybrid wheat breeding. The percentage of elite lines developed from the tested DH lines produced from filial generations was in the order of F2 > F3 > F1. Conclusions: We demonstrate that coupling DH techniques with conventional breeding is an efficient strategy for accelerating the development of more practical wheat TPSGMS lines. Generation of DHs from F2 generation appeared to be the better choice considering the balance of shortening breeding time and overall breeding efficiency.


2020 ◽  
Author(s):  
Hongsheng Li ◽  
Shaoxiang Li ◽  
Sedhom Abdelkhalik ◽  
Armaghan Shahzad ◽  
Jian Gu ◽  
...  

Abstract Background: Two-line hybrid wheat system using thermo-photo sensitive genic male sterility (TPSGMS) is currently the most promising approach for wheat heterosis utilization in China. However, during past twenty years only few TPSGMS lines were developed in hybrid wheat breeding, which has been the main limiting factor to create heterotic hybrids. Application of doubled haploid (DH) breeding provides a useful strategy to efficiently develop practically usable TPSGMS lines.Results: F1s and selected F2 and F3 sterile plants of eight crosses made from two commercial TPSGMS lines were used to produce DH lines. We developed a total of 24 elite DH sterile lines with stable sterility, good outcrossing and yield potential, resistance to yellow rust and powdery mildew, as well as desirable plant height (50-60 cm). These DH lines were developed within 4 years through at least one year of evaluation. The stability of male sterility was confirmed for most (20/24) of these elite DH sterile lines by multiple tests in two or three years. These lines are expected to be used in hybrid wheat breeding. The percentage of elite lines developed from the tested DH lines produced from filial generations was in the order of F2 > F3 > F1.Conclusions: We demonstrate that coupling DH techniques with conventional breeding is an efficient strategy for accelerating the development of more practical wheat TPSGMS lines. Generation of DHs from F2 generation appeared to be the better choice considering the balance of shortening breeding time and overall breeding efficiency.


2020 ◽  
Author(s):  
Hongsheng Li ◽  
Shaoxiang Li ◽  
Sedhom Abdelkhalik ◽  
Armaghan Shahzad ◽  
Jian Gu ◽  
...  

Abstract Background: Two-line hybrid wheat system using thermo-photo sensitive genic male sterility (TPSGMS) is currently the most promising approach for wheat heterosis utilization in China. However, during past twenty years only few TPSGMS lines were developed in hybrid wheat breeding, which has been the main limiting factor to create heterotic hybrids. Application of doubled haploid (DH) breeding provides a useful strategy to efficiently develop practically usable TPSGMS lines.Results: F1s and selected F2 and F3 sterile plants of eight crosses made from two commercial TPSGMS lines were used to produce DH lines. We developed a total of 24 elite DH sterile lines with stable sterility, good outcrossing and yield potential, resistance to yellow rust and powdery mildew, as well as desirable plant height (50-60 cm). These DH lines were developed within 4 years through at least one year of evaluation. The stability of male sterility was confirmed for most (20/24) of these elite DH sterile lines by multiple tests in two or three years. These lines are expected to be used in hybrid wheat breeding. The percentage of elite lines developed from the tested DH lines produced from filial generations was in the order of F2 > F3 > F1.Conclusions: We demonstrate that coupling DH techniques with conventional breeding is an efficient strategy for accelerating the development of more practical wheat TPSGMS lines. Generation of DHs from F2 generation appeared to be the better choice considering the balance of shortening breeding time and overall breeding efficiency.


2019 ◽  
Author(s):  
Hongsheng Li ◽  
Shaoxiang Li ◽  
Sedhom Abdelkhalik ◽  
Armaghan Shahzad ◽  
Jian Gu ◽  
...  

Abstract Two-line hybrid wheat system using thermo-photo sensitive genic male sterility (TPSGMS) is now a dominant and promising approach of wheat heterosis utilization in China. However, few TPSGMS lines available for practical application have always been a bottleneck affecting the efficiency of creating hybrids with strong heterosis since its establishment in 1992. This study aimed to improve the efficiency of developing TPSGMS lines by doubled haploid (DH) breeding. F 1 s and selected F 2 and F 3 sterile plants from 8 crosses made with 2 commercial TPSGMS lines K78S and K456S were used to produce DH lines by wheat × maize system. 24 elite sterile lines possessing stable sterility, good outcrossing and yield potentials, resistance to yellow rust and powdery mildew, and desirable plant height (50-60 cm) were obtained within 4 years. 20 out of 24 elite lines that performed stable sterility in tests of two or three years and high outcrossing rate (>70%) under open pollination, will be used for hybrid breeding later. The percentage of selected sterile lines in total tested DH lines produced from filial generations was in the order of F 3 > F 2 > F 1 for sterility, and F 2 > F 3 > F 1 for elite lines in this study, thus producing DHs from F 2 generation appeared to be the better choice considering the balance of overall breeding efficiency and time saving. This study verified that combining DH techniques with conventional breeding would be an efficient strategy for developing practically usable wheat TPSGMS lines, both in number and time saving.


2021 ◽  
Vol 22 (16) ◽  
pp. 8541
Author(s):  
Wenlong Yang ◽  
Yafei Li ◽  
Linhe Sun ◽  
Muhammad Shoaib ◽  
Jiazhu Sun ◽  
...  

The utilization of heterosis is an important way to improve wheat yield, and the production of wheat hybrid seeds mainly relies on male-sterile lines. Male sterility in line 15 Fan 03 derived from a cross of 72,180 and Xiaoyan 6 is controlled by a single recessive gene. The gene was mapped to the distal region of chromosome 4BS in a genetic interval of 1.4 cM and physical distance of 6.57 Mb between SSR markers Ms4BS42 and Ms4BS199 using an F2 population with 1205 individuals. Sterile individuals had a deletion of 4.57 Mb in the region presumed to carry the Ms1 locus. The allele for sterility was therefore named ms1s. Three CAPS markers were developed and verified from the region upstream of the deleted fragment and can be used for ms1s marker-assisted selection in wheat hybrid breeding. This work will enrich the utilization of male sterility genetic resources.


2015 ◽  
Vol 112 (51) ◽  
pp. 15624-15629 ◽  
Author(s):  
Yusheng Zhao ◽  
Zuo Li ◽  
Guozheng Liu ◽  
Yong Jiang ◽  
Hans Peter Maurer ◽  
...  

Hybrid breeding promises to boost yield and stability. The single most important element in implementing hybrid breeding is the recognition of a high-yielding heterotic pattern. We have developed a three-step strategy for identifying heterotic patterns for hybrid breeding comprising the following elements. First, the full hybrid performance matrix is compiled using genomic prediction. Second, a high-yielding heterotic pattern is searched based on a developed simulated annealing algorithm. Third, the long-term success of the identified heterotic pattern is assessed by estimating the usefulness, selection limit, and representativeness of the heterotic pattern with respect to a defined base population. This three-step approach was successfully implemented and evaluated using a phenotypic and genomic wheat dataset comprising 1,604 hybrids and their 135 parents. Integration of metabolomic-based prediction was not as powerful as genomic prediction. We show that hybrid wheat breeding based on the identified heterotic pattern can boost grain yield through the exploitation of heterosis and enhance recurrent selection gain. Our strategy represents a key step forward in hybrid breeding and is relevant for self-pollinating crops, which are currently shifting from pure-line to high-yielding and resilient hybrid varieties.


2020 ◽  
Vol 47 (8) ◽  
pp. 675 ◽  
Author(s):  
Caterina Selva ◽  
Matteo Riboni ◽  
Ute Baumann ◽  
Tobias Würschum ◽  
Ryan Whitford ◽  
...  

Hybrid breeding in wheat (Triticum aestivum L.) has the potential to deliver major yield increases. This is a requisite to guarantee food security for increasing population demands and to counterbalance the effects of extreme environmental conditions. Successful hybrid breeding in wheat relies on forced outcrossing while preventing self-pollination. To achieve this, research has been directed towards identifying and improving fertility control systems. To maximise cross-pollination and seed set, however, fertility control systems need to be complemented by breeding phenotypically distinct male and female lines. This review summarises existing and novel male sterility systems for wheat hybridisation. We also consider the genetic resources that can be used to alter wheat’s floral development and spike morphology, with a focus on the genetic variation already available. Exploiting these resources can lead to enhanced outcrossing, a key requirement in the progress towards hybrid wheat breeding.


2019 ◽  
Vol 70 (4) ◽  
pp. 306 ◽  
Author(s):  
Wei Li ◽  
Zihan Liu ◽  
Chang Meng ◽  
Yulin Jia ◽  
Lingli Zhang ◽  
...  

Cytoplasmic male sterile (CMS) lines are important tools for hybrid production but they cannot produce viable pollen. Breeding new CMS lines and studying their sterility mechanism in wheat (Triticum aestivum L.) greatly facilitates the process of hybrid wheat breeding. We conducted transcriptome sequencing for a recently identified Mu-CMS line with Aegilops uniaristata Vis. cytoplasm, named U706A, and its isonuclear maintainer line (706B) at the binucleate stage, which was a critical period when abortion occurred. We found that most of the genes involved in phosphatidylinositol metabolism and pectin degradation were downregulated, as well as genes encoding the MYB21 and MYC2 transcription factors, in U706A compared with 706B. In addition, pectin contents indicated that the production of pectin has been enhanced from the binucleate stage to the trinucleate stage, owing to the downregulation of pectin-degradation-related genes in U706A at the binucleate stage, which confirmed the reliability of the sequencing results. We also discovered that the accumulation period of pectin content in U706A is abnormal compared with 706B, which may be an important reason for abortion. Some differentially expressed genes that might be related to the sterile phenotype were verified by quantitative RT-PCR. Therefore, we suggest that the downregulation of these genes possibly leads to the anther not to crack; the tapetum and microspore membrane system is less metabolised, and the abnormal pectin accumulation results in microspore nutrient deficiencies and abnormal development. These findings provide novel insights into the mechanism responsible for pollen abortion in CMS, which may facilitate hybrid wheat breeding.


Sign in / Sign up

Export Citation Format

Share Document