scholarly journals Construction of a High-density Genetic Linkage Map and QTL Analysis of Resistance to Cucumber Mosaic Virus in Luffa cylindrica (L.) Roem. Based on Specific Length Amplified Fragment Sequencing

2019 ◽  
Author(s):  
Lina Lou ◽  
Zhe Liu ◽  
Xiaohong Liu ◽  
Xiaojun Su

Abstract The authors have withdrawn this preprint from Research Square

2018 ◽  
pp. 25-30
Author(s):  
D. Torello Marinoni ◽  
N. Valentini ◽  
E. Portis ◽  
A. Acquadro ◽  
C. Beltramo ◽  
...  

2019 ◽  
Vol 99 (5) ◽  
pp. 599-610
Author(s):  
Junhuan Zhang ◽  
Haoyuan Sun ◽  
Li Yang ◽  
Fengchao Jiang ◽  
Meiling Zhang ◽  
...  

A high-density genetic map of apricot (Prunus armeniaca L.) was constructed using an F1 population constructed by crossing two main Chinese cultivars ‘Chuanzhihong’ and ‘Luotuohuang’, coupled with a recently developed reduced representation library (RRL) sequencing. The average sequencing depth was 38.97 in ‘Chuanzhihong’ (female parent), 33.05 in ‘Luotuohuang’ (male parent), and 8.91 in each progeny. Based on the sequencing data, 12 451 polymorphic markers were developed and used in the construction of the genetic linkage map. The final map of apricot comprised eight linkage groups, including 1991 markers, and covered 886.25 cM of the total map length. The average distance between adjacent markers was narrowed to 0.46 cM. Gaps larger than 5 cM only accounted for <0.33%. To our knowledge, this map is the densest genetic linkage map that is currently available for apricot research. It is a valuable linkage map for quantitative trait loci (QTLs) identification of important agronomic traits. Moreover, the high marker density and well-ordered markers that this linkage map provides will be useful for molecular breeding of apricot as well. In this study, we applied this map in the QTL analysis of an important agronomic trait, pistil abortion. Several QTLs were detected and mapped respectively to the middle regions of LG5 (51.005∼59.4 cM) and LG6 (72.884∼76.562 cM), with nine SLAF markers closely linked to pistil abortion. The high-density genetic map and QTLs detected in this study will facilitate marker-assisted breeding and apricot genomic study.


Agronomy ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 114 ◽  
Author(s):  
Xiaoxia Yu ◽  
Mingfei Zhang ◽  
Zhuo Yu ◽  
Dongsheng Yang ◽  
Jingwei Li ◽  
...  

Specific length amplified fragment sequencing (SLAF-seq) is a recently developed high-resolution strategy for the discovery of large-scale de novo genotyping of single nucleotide polymorphism (SNP) markers. In the present research, in order to facilitate genome-guided breeding in potato, this strategy was used to develop a large number of SNP markers and construct a high-density genetic linkage map for tetraploid potato. The genomic DNA extracted from 106 F1 individuals derived from a cross between two tetraploid potato varieties YSP-4 × MIN-021 and their parents was used for high-throughput sequencing and SLAF library construction. A total of 556.71 Gb data, which contained 2269.98 million pair-end reads, were obtained after preprocessing. According to bioinformatics analysis, a total of 838,604 SLAF labels were developed, with an average sequencing depth of 26.14-fold for parents and 15.36-fold for offspring of each SLAF, respectively. In total, 113,473 polymorphic SLAFs were obtained, from which 7638 SLAFs were successfully classified into four segregation patterns. After filtering, a total of 7329 SNP markers were detected for genetic map construction. The final integrated linkage map of tetraploid potato included 3001 SNP markers on 12 linkage groups, and covered 1415.88 cM, with an average distance of 0.47 cM between adjacent markers. To our knowledge, the integrated map described herein has the best coverage of the potato genome and the highest marker density for tetraploid potato. This work provides a foundation for further quantitative trait loci (QTL) location, map-based gene cloning of important traits and marker-assisted selection (MAS) of potato.


2019 ◽  
Author(s):  
Lina Lou ◽  
Zhe Liu ◽  
Xiaohong Liu ◽  
Xiaojun Su

Abstract Background: Luffa cylindrica L. is an economically important vegetable crop that is consumed globally. Cucumber mosaic virus (CMV) is an important virus affecting Luffa spp. No specific high-density maps have been constructed owing to a lack of efficient markers. Furthermore, no genes or quantitative trait loci (QTLs) are reportedly responsible for CMV resistance in Luffa spp. The development of next-generation sequencing has enabled discovery of single nucleotide polymorphisms and high-throughput genotyping of large populations. Results: A total of 271.01 Mb pair-end reads were generated. The average sequencing depth was 86.19× in both maternal and parental lines, and 14.57× in each F 2 individual. When filtering low-depth specific locus amplified fragment (SLAF) tags, 100,077 high-quality SLAFs were detected, and 7,405 of them were polymorphic. Finally, 3,701 of the polymorphic markers were selected for genetic map construction, and 13 linkage groups were generated. The map spanned 1,518.56 cM with an average distance of 0.41 cM between adjacent markers. Our results also revealed that CMV resistance was regulated by QTLs. Based on the newly constructed high-density map, two loci located on chromosome 1 (100.072 ~ 100.457 cM) and 4 (42.475 ~ 44.398 cM) were identified to regulate CMV resistance in L. cylindrica . A gag-polypeptide of LTR copia-type retrotransposon was predicted as the candidate gene responsible for CMV resistance in L. cylindrica . Conclusions: A high-density linkage map of L. cylindrica was constructed using SLAF. QTL mapping based on CMV disease phenotypes of F 2 led to the identification of two QTL on chromosome 1 and 4, respectively. Kompetitive allele-specific PCR analysis of 60 F 2 individuals, which gave rise to F 2:3 individuals, was carried out. We found that the QTL on chromosome 1 was associated with CMV resistance. Mapping of CMV QTL combined with the transcriptomic sequence alignment identified a gag-polypeptide of LTR copia-type retrotransposon as the most likely causal gene.


Sign in / Sign up

Export Citation Format

Share Document