scholarly journals Comparative transcriptome profiling reveals cold stress responsiveness in two contrasting Chinese jujube cultivars

2020 ◽  
Author(s):  
Heying Zhou ◽  
Ying He ◽  
Yongsheng Zhu ◽  
Meiyu Li ◽  
Shuang Song ◽  
...  

Abstract Background: Low temperature is a major factor influencing the growth and development of Chinese jujube (Ziziphus jujuba Mill.) in cold winter and spring. Little is known about the molecular mechanisms enabling jujube to cope with different freezing stress conditions. To elucidate the freezing-related molecular changes, we conducted comparative transcriptome analyses from the cold-sensitive cultivar ‘Dongzao’ and cold-tolerant cultivar ‘Jinsixiaozao’ using RNA-Seq. Results: In our study, more than 20,000 genes were detected at chilling (4°C) and freezing (-10°C, -20°C, -30°C and -40°C) stress between the two cultivars. The numbers of differentially expressed genes (DEGs) between the two cultivars were 1831, 2030, 1993, 1845 and 2137 under the five treatments. Functional enrichment analysis suggested that the metabolic pathway, response to stimulus and catalytic activity were significantly enriched under stronger freezing stress. Among the DEGs, nine participated in the Ca2+ signal pathway, thirty-two were identified to participate in sucrose metabolism, and others were identified to participate in the regulation of ROS, plant hormones and antifreeze proteins. In addition, important transcription factors (WRKY, AP2/ERF, NAC and bZIP) participating in freezing stress were activated under different degrees of freezing stress. Conclusions: Our research first provides a more comprehensive understanding of DEGs involved in freezing stress at the transcriptome level in two Z. jujuba cultivars with different freezing tolerances. These results may help to elucidate the molecular mechanism of freezing tolerance in jujube and also provides new insights and candidate genes for genetically enhancing freezing stress tolerance.

2020 ◽  
Author(s):  
Heying Zhou(Former Corresponding Author) ◽  
Xiaoming Pang(New Corresponding Author) ◽  
Ying He ◽  
Yongsheng Zhu ◽  
Meiyu Li ◽  
...  

Abstract Background Low temperature is a major factor influences the growth and development of Chinese jujube ( Ziziphus jujuba Mill.) in cold winter and spring. Little is known about the molecular mechanisms for coping with different freezing stress conditions in jujube. To gain insight into the freezing-related molecular changes, we conducted comparative transcriptome analyses from the cold-sensitive cultivar ‘Dongzao’ and cold-tolerant cultivar ‘Jinsixiaozao’ using RNA-Seq. Results In our study, more than 20,000 genes were detected at chilling (4°C) and freezing (-10°C, -20°C, -30°C and -40°C) stress between two cultivars. The numbers of differentially expressed genes (DEGs) between the two cultivars was 1831, 2030, 1993, 1845 and 2137 under the five treatments, respectively. Functional enrichment analysis suggested that metabolic pathway, response to stimulus and catalytic activity were significantly enriched at stronger freezing stress. Among them, nine DEGs participated in the pathway of Ca 2+ signal, thirty-two DEGs were identified to take part in sucrose metabolism, and other DEGs were identified to participate in the regulation of ROS, plant hormones and antifreeze protein. In addition, important transcription factors ( WRKY , AP2 / ERF , NAC and bZIP ) participating in the freezing stress were activated under different degrees of freezing stress. Conclusions Our research provides a more comprehensive understanding of DEGs involved in freezing stress at the transcriptome levels in Z. jujuba , especially two cultivars with different cold tolerance. These results expanding our understanding on the complex molecular mechanism of jujube, which also provide new insights and candidate genes for genetic improvement of jujube tolerance to freezing stress.


2020 ◽  
Author(s):  
Heying Zhou ◽  
Ying He ◽  
Yongsheng Zhu ◽  
Meiyu Li ◽  
Shuang Song ◽  
...  

Abstract Background: Low temperature is a major factor influencing the growth and development of Chinese jujube ( Ziziphus jujuba Mill.) in cold winter and spring. Little is known about the molecular mechanisms enabling jujube to cope with different freezing stress conditions. To elucidate the freezing-related molecular mechanism, we conducted comparative transcriptome analysis between ‘Dongzao’ (low freezing tolerance cultivar) and ‘Jinsixiaozao’ (high freezing tolerance cultivar) using RNA-Seq. Results: More than 20,000 genes were detected at chilling (4°C) and freezing (-10°C, -20°C, -30°C and -40°C) stress between the two cultivars. The numbers of differentially expressed genes (DEGs) between the two cultivars were 1831, 2030, 1993, 1845 and 2137 under the five treatments. Functional enrichment analysis suggested that the metabolic pathway, response to stimulus and catalytic activity were significantly enriched under stronger freezing stress. Among the DEGs, nine participated in the Ca 2+ signal pathway, thirty-two were identified to participate in sucrose metabolism, and others were identified to participate in the regulation of ROS, plant hormones and antifreeze proteins. In addition, important transcription factors ( WRKY , AP2 / ERF , NAC and bZIP ) participating in freezing stress were activated under different degrees of freezing stress. Conclusions: Our research first provides a more comprehensive understanding of DEGs involved in freezing stress at the transcriptome level in two Z. jujuba cultivars with different freezing tolerances. These results may help to elucidate the molecular mechanism of freezing tolerance in jujube and also provides new insights and candidate genes for genetically enhancing freezing stress tolerance.


2020 ◽  
Author(s):  
Heying Zhou ◽  
Ying He ◽  
Yongsheng Zhu ◽  
Meiyu Li ◽  
Shuang Song ◽  
...  

Abstract Background: Low temperature is a major factor influencing the growth and development of Chinese jujube (Ziziphus jujuba Mill.) in cold winter and spring. Little is known about the molecular mechanisms enabling jujube to cope with different freezing stress conditions. To elucidate the freezing-related molecular mechanism, we conducted comparative transcriptome analysis between ‘Dongzao’ (low freezing tolerance cultivar) and ‘Jinsixiaozao’ (high freezing tolerance cultivar) using RNA-Seq. Results: More than 20,000 genes were detected at chilling (4°C) and freezing (-10°C, -20°C, -30°C and -40°C) stress between the two cultivars. The numbers of differentially expressed genes (DEGs) between the two cultivars were 1831, 2030, 1993, 1845 and 2137 under the five treatments. Functional enrichment analysis suggested that the metabolic pathway, response to stimulus and catalytic activity were significantly enriched under stronger freezing stress. Among the DEGs, nine participated in the Ca2+ signal pathway, thirty-two were identified to participate in sucrose metabolism, and others were identified to participate in the regulation of ROS, plant hormones and antifreeze proteins. In addition, important transcription factors (WRKY, AP2/ERF, NAC and bZIP) participating in freezing stress were activated under different degrees of freezing stress. Conclusions: Our research first provides a more comprehensive understanding of DEGs involved in freezing stress at the transcriptome level in two Z. jujuba cultivars with different freezing tolerances. These results may help to elucidate the molecular mechanism of freezing tolerance in jujube and also provides new insights and candidate genes for genetically enhancing freezing stress tolerance.


2019 ◽  
Vol 14 (7) ◽  
pp. 591-601 ◽  
Author(s):  
Aravind K. Konda ◽  
Parasappa R. Sabale ◽  
Khela R. Soren ◽  
Shanmugavadivel P. Subramaniam ◽  
Pallavi Singh ◽  
...  

Background: Chickpea is a nutritional rich premier pulse crop but its production encounters setbacks due to various stresses and understanding of molecular mechanisms can be ascribed foremost importance. Objective: The investigation was carried out to identify the differentially expressed WRKY TFs in chickpea in response to herbicide stress and decipher their interacting partners. Methods: For this purpose, transcriptome wide identification of WRKY TFs in chickpea was done. Behavior of the differentially expressed TFs was compared between other stress conditions. Orthology based cofunctional gene networks were derived from Arabidopsis. Gene ontology and functional enrichment analysis was performed using Blast2GO and STRING software. Gene Coexpression Network (GCN) was constructed in chickpea using publicly available transcriptome data. Expression pattern of the identified gene network was studied in chickpea-Fusarium interactions. Results: A unique WRKY TF (Ca_08086) was found to be significantly (q value = 0.02) upregulated not only under herbicide stress but also in other stresses. Co-functional network of 14 genes, namely Ca_08086, Ca_19657, Ca_01317, Ca_20172, Ca_12226, Ca_15326, Ca_04218, Ca_07256, Ca_14620, Ca_12474, Ca_11595, Ca_15291, Ca_11762 and Ca_03543 were identified. GCN revealed 95 hub genes based on the significant probability scores. Functional annotation indicated role in callose deposition and response to chitin. Interestingly, contrasting expression pattern of the 14 network genes was observed in wilt resistant and susceptible chickpea genotypes, infected with Fusarium. Conclusion: This is the first report of identification of a multi-stress responsive WRKY TF and its associated GCN in chickpea.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Meng Liu ◽  
Xia Li ◽  
Rui Fan ◽  
Xinhua Liu ◽  
Ju Wang

Nicotine, as the major psychoactive component of tobacco, has broad physiological effects within the central nervous system, but our understanding of the molecular mechanism underlying its neuronal effects remains incomplete. In this study, we performed a systematic analysis on a set of nicotine addiction-related genes to explore their characteristics at network levels. We found that NAGenes tended to have a more moderate degree and weaker clustering coefficient and to be less central in the network compared to alcohol addiction-related genes or cancer genes. Further, clustering of these genes resulted in six clusters with themes in synaptic transmission, signal transduction, metabolic process, and apoptosis, which provided an intuitional view on the major molecular functions of the genes. Moreover, functional enrichment analysis revealed that neurodevelopment, neurotransmission activity, and metabolism related biological processes were involved in nicotine addiction. In summary, by analyzing the overall characteristics of the nicotine addiction related genes, this study provided valuable information for understanding the molecular mechanisms underlying nicotine addiction.


2020 ◽  
Author(s):  
Yiyuan Zhang ◽  
Rongguo Yu ◽  
Jiayu Zhang ◽  
Eryou Feng ◽  
Haiyang Wang ◽  
...  

Abstract BackgroundOsteoarthritis (OA) is a common chronic disease worldwide. Subchondral bone is an important pathological change in OA and responds more rapidly to adverse loading and events compared to cartilage. However, the pathogenic genes and pathways of subchondral bone are largely unclear.ObjectiveThis study aimed to identify signature differences in genes involved in knee lateral tibial (LT) and medial tibial (MT) plateaus of subchondral bone tissue while exploring their potential molecular mechanisms via bioinformatics analysis.MethodsFirst, the gene expression data of GSE51588 was downloaded from the GEO database. Differentially expressed genes (DEGs) between knee LT and MT were identified, and functional enrichment analyses were performed. Then, a protein-protein interactive network was constructed in order to acquire the hub genes, and modules analysis was conducted using STRING and Cytoscape for further analysis. The enriched hub genes were queried in DGIdb database to find suitable drug candidates in OA.ResultsA total of 202 DEGs (112 upregulated genes and 84 downregulated genes) were determined. In the PPI network, ten hub genes were identified. Five significant modules were identified using the MCODE plugin unit. Functional enrichment analysis revealed the most important signaling pathways. Six of the ten hub genes were targetable by a total of 35 drugs, suggesting their possible therapeutic use for OA .ConclusionsThe identified hub genes and functional enrichment pathways were implicated in the development and progression of subchondral bone in OA, thus improving our understanding of OA and offering molecular targets for future therapeutic modalities.


2021 ◽  
Author(s):  
Nana Yang ◽  
Qianghua Wang ◽  
Biao Ding ◽  
Yinging Gong ◽  
Yue Wu ◽  
...  

Abstract Background: The accumulation of ROS resulting from upregulated levels of oxidative stress is commonly implicated in preeclampsia (PE). Ferroptosis is a novel form of iron-dependent cell death instigated by lipid peroxidation likely plays important role in PE pathogenesis. This study aims to investigate expression profiles and functions of the ferroptosis-related genes (FRGs) in early- and late-onset preeclampsia.Methods: The gene expression data and clinical information were downloaded from GEO database. The “limma” R package was used for screening differentially expressed genes. GO(Gene Ontology), Kyoto Encyclopedia of Genes and Genomes(KEGG) and protein protein interaction (PPI) network analyses were conducted to investigate the bioinformatics functions and molecular interactions of significantly different FRGs. Quantitative real-time reverse transcriptase PCR was used to verify the expression of hub FRGs in PE.Results: A total number of 4,215 DEGs were identified between EOPE and preterm cases and 3,356 DEGs were found between EOPE and LOPE subtypes. 20 significantly different FRGs were identified in EOPE, while only 3 in LOPE. Functional enrichment analysis revealed that the differentially expressed FRGs was mainly involved in EOPE and enriched in hypoxia- and iron-related pathways, such as response to hypoxia, iron homeostasis and iron ion binding process. The PPI network analysis and verification by RT-qPCR resulted in the identification of the following six interesting FRGs: FTH1, HIF1A, FTL, IREB2, MAPK8 and PLIN2. Conclusions: EOPE and LOPE owned distinct underlying molecular mechanisms and ferroptosis may be mainly implicated in pathogenesis of EOPE. Further studies are necessary for deeper inquiry into placental ferroptosis and its role in the pathogenesis of EOPE.


2020 ◽  
Vol 26 (7) ◽  
pp. 635-648
Author(s):  
Zhixiong Zhou ◽  
Guojing Gu ◽  
Yichen Luo ◽  
Wenjie Li ◽  
Bowen Li ◽  
...  

As the molecular mechanisms of Brucella ovis pathogenicity are not completely clear, we have applied a transcriptome approach to identify the differentially expressed genes (DEGs) in RAW264.7 macrophage infected with B. ovis. The DEGs related to immune pathway were identified by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) functional enrichment analysis. Quantitative real-time PCR (qRT-PCR) was performed to validate the transcriptome sequencing data. In total, we identified 337 up-regulated and 264 down-regulated DEGs in B. ovis-infected group versus mock group. Top 20 pathways were enriched by KEGG analysis and 20 GO by functional enrichment analysis in DEGs involved in the molecular function, cellular component, and biological process and so on, which revealed multiple immunological pathways in RAW264.7 macrophage cells in response to B. ovis infection, including inflammatory response, immune system process, immune response, cytokine activity, chemotaxis, chemokine-mediated signaling pathway, chemokine activity, and CCR chemokine receptor binding. qRT-PCR results showed Ccl2 (ENSMUST00000000193), Ccl2 (ENSMUST00000124479), Ccl3 (ENSMUST00000001008), Hmox1 (ENSMUST00000005548), Hmox1 (ENSMUST00000159631), Cxcl2 (ENSMUST00000075433), Cxcl2 (ENSMUST00000200681), Cxcl2 (ENSMUST00000200919), and Cxcl2 (ENSMUST00000202317). Our findings firstly elucidate the pathways involved in B. ovis-induced host immune response, which may lay the foundation for revealing the bacteria–host interaction and demonstrating the pathogenic mechanism of B. ovis.


2020 ◽  
Vol 11 ◽  
Author(s):  
Lokesh P. Tripathi ◽  
Mari N. Itoh ◽  
Yoshito Takeda ◽  
Kazuyuki Tsujino ◽  
Yasushi Kondo ◽  
...  

While both chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) are multifactorial disorders characterized by distinct clinical and pathological features, their commonalities and differences have not been fully elucidated. We sought to investigate the preventive roles of tetraspanins Cd151 and Cd9 -that are involved in diverse cellular processes in lung pathophysiology- in pulmonary fibrosis and emphysema, respectively, and to obtain a deeper understanding of their underlying molecular mechanisms toward facilitating improved therapeutic outcomes. Using an integrative approach, we examined the transcriptomic changes in the lungs of Cd151- and Cd9-deficient mice using functional-enrichment-analysis, pathway-perturbation-analysis and protein-protein-interaction (PPI) network analysis. Circadian-rhythm, extracellular-matrix (ECM), cell-adhesion and inflammatory responses and associated factors were prominently influenced by Cd151-deletion. Conversely, cellular-junctions, focal-adhesion, vascular-remodeling, and TNF-signaling were deeply impacted by Cd9-deletion. We also highlighted a “common core” of factors and signaling cascades that underlie the functions of both Cd151 and Cd9 in lung pathology. Circadian dysregulation following Cd151-deletion seemingly facilitated progressive fibrotic lung phenotype. Conversely, TGF-β signaling attenuation and TNF-signaling activation emerged as potentially novel functionaries of Cd9-deletion-induced emphysema. Our findings offer promising avenues for developing novel therapeutic treatments for pulmonary fibrosis and emphysema.


2016 ◽  
Vol 26 (6) ◽  
pp. 401-409 ◽  
Author(s):  
Junrui Wang ◽  
Junli Zhang ◽  
Quan Fu ◽  
Sufang Guo ◽  
La Ta ◽  
...  

This study aimed to investigate the molecular mechanisms underlying the antibiotic resistance difference among three <i>Acinetobacter baumannii</i> isolates. Fifty <i>A. baumannii</i> isolates were first subjected to an antimicrobial susceptibility test, then three isolates differing in antibiotic resistance were selected and subjected to iTRAQ (isobaric tags for relative and absolute quantification)-based proteomics analysis. Differential proteins among the three <i>A. baumannii</i> isolates were further identified and subjected to gene ontology functional enrichment analysis. A resistant isolate (A1), a less resistant one (A8) and a susceptible one (A9) were selected. In total, there were 424 differentially expressed proteins (DEPs) between the A1 and A8 isolates, 1,992 DEPs between the A9 and A1 isolates, and 1,956 DEPs between the A8 and A9 isolates. The upregulation of I6TUC8 and Q0GA83 in the A1 and A8 isolates may be responsible for their higher resistance to ceftriaxone. The higher gentamicin resistance of <i>A. baumannii</i> isolates A1 and A8 when compared to A9 may be related to the higher expression levels of O05286 and D0CCK1, while the higher Q2FCY1 expression level may contribute more to strong gentamicin resistance in A1. The higher levels of L9LWL7, L9MDB0, K9C9W3, E2IGU7, B6E129, G8HYR7, D2XTB0 and D2XTB0 may be responsible for the higher carbapenem resistance of isolate A1 as compared to A8.


Sign in / Sign up

Export Citation Format

Share Document