scholarly journals Reliability of Tibiofemoral Contact Area and Centroid Location in an Upright, Open MRI (UO-MRI)

2020 ◽  
Author(s):  
Andrew Schmidt ◽  
David J. Stockton ◽  
Michael A. Hunt ◽  
Andrew Yung ◽  
Bassam A. Masri ◽  
...  

Abstract Background: Biomechanical studies are often performed using conventional closed-bore MR, which has necessitated simulating weightbearing load on the joint. The clinical applicability of these biomechanical findings is unclear because of the limitations of simulating weightbearing. Upright, open MRI (UO-MRI) can be used to assess knee joint mechanics, in particular contact area and centroid location. However, it is not clear how reliably measurements of contact area and centroid location can be made in upright weightbearing postures. Methods: Manual segmentation of cartilage regions in contact was performed and centroids of those contact areas were automatically determined for the medial (MC) and lateral (LC) tibiofemoral compartments. To assess reliability, inter-rater, test-retest, and intra-rater reliability were determined by intra-class correlation (ICC 3,1 ), standard error of measurement (SEM), smallest detectable change with 95% confidence (SDC 95 ). Accuracy was assessed by using a high-resolution, 7T MRI as a reference and determined by measurement error (%). Results: Contact area and centroid location reliability (inter-rater, test-retest, and intra-rater) for sagittal scans in the MC demonstrated ICC 3,1 values from 0.95-0.99 and 0.98-0.99 respectively, and in the LC from 0.83-0.91 and 0.95-1.00 respectively. The smallest detectable change in contact area was 1.28% in the MC and 0.95% in the LC. Contact area and centroid location reliability for coronal scans in the MC demonstrated ICC 3,1 values from 0.90-0.98 and 0.98-1.00 respectively, and in the LC from 0.76-0.94 and 0.93-1.00 respectively. The smallest detectable change in contact area was 0.65% in the MC and 1.41% in the LC. Contact area segmentation was accurate to within 4.81% measurement error. Conclusions: Knee contact area and contact centroid location can be assessed in upright weightbearing MRI with good to excellent reliability and accuracy within 5%. The lower field strength used in upright, weightbearing MRI does not compromise the reliability of tibiofemoral contact area and centroid location measures.

2020 ◽  
Author(s):  
Andrew Schmidt ◽  
David J. Stockton ◽  
Michael A. Hunt ◽  
Andrew Yung ◽  
Bassam A. Masri ◽  
...  

Abstract Background: Biomechanical studies are often performed using conventional closed-bore MR, which has necessitated simulating weightbearing load on the joint. The clinical applicability of these biomechanical findings is unclear because of the limitations of simulating weightbearing. Upright, open MRI (UO-MRI) can be used to assess knee joint mechanics, in particular contact area and centroid location. However, it is not clear how reliably measurements of contact area and centroid location can be made in upright weightbearing postures. Methods: Manual segmentation of cartilage regions in contact was performed and centroids of those contact areas were automatically determined for the medial (MC) and lateral (LC) tibiofemoral compartments. To assess reliability, inter-rater, test-retest, and intra-rater reliability were determined by intra-class correlation (ICC 3,1 ), standard error of measurement (SEM), smallest detectable change with 95% confidence (SDC 95 ). Accuracy was assessed by using a high-resolution, 7T MRI as a reference and determined by measurement error (%). Results: Contact area and centroid location reliability (inter-rater, test-retest, and intra-rater) for sagittal scans in the MC demonstrated ICC 3,1 values from 0.95-0.99 and 0.98-0.99 respectively, and in the LC from 0.83-0.91 and 0.95-1.00 respectively. The smallest detectable change in contact area was 1.28% in the MC and 0.95% in the LC. Contact area and centroid location reliability for coronal scans in the MC demonstrated ICC 3,1 values from 0.90-0.98 and 0.98-1.00 respectively, and in the LC from 0.76-0.94 and 0.93-1.00 respectively. The smallest detectable change in contact area was 0.65% in the MC and 1.41% in the LC. Contact area segmentation was accurate to within 4.81% measurement error. Conclusions: Knee contact area and contact centroid location can be assessed in upright weightbearing MRI with good to excellent reliability and accuracy within 5%. The lower field strength used in upright, weightbearing MRI does not compromise the reliability of tibiofemoral contact area and centroid location measures.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Andrew M. Schmidt ◽  
David J. Stockton ◽  
Michael A. Hunt ◽  
Andrew Yung ◽  
Bassam A. Masri ◽  
...  

Abstract Background Imaging cannot be performed during natural weightbearing in biomechanical studies using conventional closed-bore MRI, which has necessitated simulating weightbearing load on the joint. Upright, open MRI (UO-MRI) allows for joint imaging during natural weightbearing and may have the potential to better characterize the biomechanical effect of tibiofemoral pathology involving soft tissues. However open MRI scanners have lower field strengths than closed-bore scanners, which limits the image quality that can be obtained. Thus, there is a need to establish the reliability of measurements in upright weightbearing postures obtained using UO-MRI. Methods Knees of five participants with prior anterior cruciate ligament (ACL) rupture were scanned standing in a 0.5 T upright open MRI scanner using a 3D DESS sequence. Manual segmentation of cartilage regions in contact was performed and centroids of these contact areas were automatically determined for the medial and lateral tibiofemoral compartments. Inter-rater, test-retest, and intra-rater reliability were determined and quantified using intra-class correlation (ICC3,1), standard error of measurement (SEM), and smallest detectable change with 95% confidence (SDC95). Accuracy was assessed by using a high-resolution 7 T MRI as a reference. Results Contact area and centroid location reliability (inter-rater, test-retest, and intra-rater) for sagittal scans in the medial compartment had ICC3,1 values from 0.95–0.99 and 0.98–0.99 respectively. In the lateral compartment, contact area and centroid location reliability ICC3,1 values ranged from 0.83–0.91 and 0.95–1.00 respectively. The smallest detectable change in contact area was 1.28% in the medial compartment and 0.95% in the lateral compartment. Contact area and centroid location reliability for coronal scans in the medial compartment had ICC3,1 values from 0.90–0.98 and 0.98–1.00 respectively, and in the lateral compartment ICC3,1 ranged from 0.76–0.94 and 0.93–1.00 respectively. The smallest detectable change in contact area was 0.65% in the medial compartment and 1.41% in the lateral compartment. Contact area was accurate to within a mean absolute error of 11.0 mm2. Conclusions Knee contact area and contact centroid location can be assessed in upright weightbearing MRI with good to excellent reliability. The lower field strength used in upright, weightbearing MRI does not compromise the reliability of tibiofemoral contact area and centroid location measures.


2020 ◽  
Author(s):  
Andrew Schmidt ◽  
David J. Stockton ◽  
Michael A. Hunt ◽  
Andrew Yung ◽  
Bassam A. Masri ◽  
...  

Abstract Background: In biomechanical studies using conventional closed-bore MR, imaging cannot be performed during natural weightbearing which has necessitated simulating weightbearing load on the joint. Upright, open MRI (UO-MRI) allows for joint imaging during natural weightbearing and may have the potential to better characterize the biomechanical effect of tibiofemoral pathology involving soft tissues. However open MRI scanners have lower field strengths than closed-bore scanners, which limits the image quality that can be obtained. Thus, there is a need to establish the reliability of measurements in upright weightbearing postures obtained via the UO-MRI.Methods: Manual segmentation of cartilage regions in contact from participants with prior anterior cruciate ligament (ACL) rupture was performed and centroids of those contact areas were automatically determined for the medial (MC) and lateral (LC) tibiofemoral compartments. To assess reliability, inter-rater, test-retest, and intra-rater reliability were determined by intra-class correlation (ICC3,1), standard error of measurement (SEM), smallest detectable change with 95% confidence (SDC95). Accuracy was assessed by using a high-resolution, 7T MRI as a reference and determined by mean absolute error (MAE).Results: Contact area and centroid location reliability (inter-rater, test-retest, and intra-rater) for sagittal scans in the MC demonstrated ICC3,1 values from 0.95-0.99 and 0.98-0.99 respectively, and in the LC from 0.83-0.91 and 0.95-1.00 respectively. The smallest detectable change in contact area was 1.28% in the MC and 0.95% in the LC. Contact area and centroid location reliability for coronal scans in the MC demonstrated ICC3,1 values from 0.90-0.98 and 0.98-1.00 respectively, and in the LC from 0.76-0.94 and 0.93-1.00 respectively. The smallest detectable change in contact area was 0.65% in the MC and 1.41% in the LC. Contact area segmentation was accurate to within a MAE of 11.0 mm2.Conclusions: Knee contact area and contact centroid location can be assessed in upright weightbearing MRI with good to excellent reliability. The lower field strength used in upright, weightbearing MRI does not compromise the reliability of tibiofemoral contact area and centroid location measures.


2020 ◽  
Author(s):  
Andrew Schmidt ◽  
David J. Stockton ◽  
Michael A. Hunt ◽  
Andrew Yung ◽  
Bassam A. Masri ◽  
...  

Abstract Background:Imaging cannot be performed during natural weightbearing in biomechanical studies using conventional closed-bore MRI, which has necessitated simulating weightbearing load on the joint. Upright, open MRI (UO-MRI) allows for joint imaging during natural weightbearing and may have the potential to better characterize the biomechanical effect of tibiofemoral pathology involving soft tissues. However open MRI scanners have lower field strengths than closed-bore scanners, which limits the image quality that can be obtained. Thus, there is a need to establish the reliability of measurements in upright weightbearing postures obtained using UO-MRI.Methods:Knees of five participants with prior anterior cruciate ligament (ACL) rupture were scanned standing in a 0.5T upright open MRI scanner using a 3D DESS sequence. Manual segmentation of cartilage regions in contact was performed and centroids of these contact areas were automatically determined for the medial and lateral tibiofemoral compartments. Inter-rater, test-retest, and intra-rater reliability were determined and quantified using intra-class correlation (ICC3,1), standard error of measurement (SEM), and smallest detectable change with 95% confidence (SDC95). Accuracy was assessed by using a high-resolution 7T MRI as a reference.Results:Contact area and centroid location reliability (inter-rater, test-retest, and intra-rater) for sagittal scans in the medial compartment had ICC3,1 values from 0.95-0.99 and 0.98-0.99 respectively. In the lateral compartment, contact area and centroid location reliability ICC3,1 values ranged from 0.83-0.91 and 0.95-1.00 respectively. The smallest detectable change in contact area was 1.28% in the medial compartment and 0.95% in the lateral compartment. Contact area and centroid location reliability for coronal scans in the medial compartment had ICC3,1 values from 0.90-0.98 and 0.98-1.00 respectively, and in the lateral compartment ICC3,1 ranged from 0.76-0.94 and 0.93-1.00 respectively. The smallest detectable change in contact area was 0.65% in the medial compartment and 1.41% in the lateral compartment. Contact area was accurate to within a mean absolute error of 11.0 mm2.Conclusions:Knee contact area and contact centroid location can be assessed in upright weightbearing MRI with good to excellent reliability. The lower field strength used in upright, weightbearing MRI does not compromise the reliability of tibiofemoral contact area and centroid location measures.


2020 ◽  
Vol 46 (1) ◽  
Author(s):  
Fernanda Rodrigues Fonseca ◽  
Roberta Rodolfo Mazzali Biscaro ◽  
Alexânia de Rê ◽  
Maíra Junkes-Cunha ◽  
Cardine Martins dos Reis ◽  
...  

ABSTRACT Objective: To test the construct validity, reliability, and measurement error of the Brazilian Portuguese-language version of the Manchester Respiratory Activities of Daily Living (MRADL) questionnaire in patients with COPD. Methods: We evaluated 50 patients with COPD, among whom 30 were men, the mean age was 64 ± 8 years, and the median FEV1 as a percentage of the predicted value (FEV1%predicted) was 38.4% (interquartile range, 29.1-57.4%). Pulmonary function and limitations in activities of daily living (ADLs) were assessed by spirometry and by face-to-face application of the MRADL, respectively. For the construct validity analysis, we tested the hypothesis that the total MRADL score would show moderate correlations with spirometric parameters. We analyzed inter-rater reliability, test-retest reliability, inter-rater measurement error, and test-retest measurement error. Results: The total MRADL score showed moderate correlations with the FEV1/FVC ratio, FEV1 in liters, FEV1%predicted, and FVC%predicted, all of the correlations being statistically significant (r = 0.34, r = 0.31, r = 0.42, and r = 0.38, respectively; p < 0.05 for all). For the reliability and measurement error of the total MRADL score, we obtained the following inter-rater and test-retest values, respectively: two-way mixed-effects model intraclass correlation coefficient for single measures, 0.92 (95% CI: 0.87-0.96) and 0.89 (95% CI: 0.81-0.93); agreement standard error of measurement, 1.03 and 0.97; smallest detectable change at the individual level, 2.86 and 2.69; smallest detectable change at the group level, 0.40 and 0.38; and limits of agreement, −2.24 to 1.96 and −2.65 to 2.69. Conclusions: In patients with COPD in Brazil, this version of the MRADL shows satisfactory construct validity, satisfactory inter-rater/test-retest reliability, and indeterminate inter-rater/test-retest measurement error.


2019 ◽  
Author(s):  
Chidozie Emmanuel Mbada ◽  
Oluwabunmi Esther Oguntoyinbo ◽  
Francis Oluwafunso Fasuyi ◽  
Opeyemi Ayodiipo Idowu ◽  
Adesola Christiana Odole ◽  
...  

AbstractIntroductionLow Back Pain is a common public health problem worsened by maladaptive beliefs and incongruent back pain behaviour. It is imperative to develop outcome measures to assess these beliefs among patients with chronic LBP. This study aimed to cross-culturally adapt and determine the psychometric properties of the Yoruba version of the ODI (ODI-Y).MethodsThe ODI-Y was cross-culturally adapted following the process involving forward translation, synthesis, backward translation, expert review, and pilot testing. One hundred and thirty-six patients with chronic LBP took part in the validation of the ODI-Y; 86 of these individuals took part in the test-retest reliability (within 1-week interval) of the translated instrument. Internal consistency and test-retest reliability of the ODI-Y were determined using the Cronbach’s alpha and intra-class correlation. Other psychometric properties explored included the factor structure and fit, convergent validity, standard error of measurement and the minimal detectable change.ResultsThe mean age of the respondents was 50.5±10.6years. The ODI-Y showed a high internal consistency, with a Cronbach’s alpha (α) of 0.81. Test-retest of the Yoruba version of the ODI within 1-week interval yielded an Intra-Class Correlation coefficient of 0.89. The ODI-Y yielded a two-factor structure which accounted for 51.7% of the variance but showed poor fit. Convergent of ODI-Y with the visual analogue scale was moderate (r=0.30; p=0.00). The standard error of measurement and minimal detectable change of the ODI-Y were 2.0 and 5.5.ConclusionsThe ODI was adapted into the Yoruba language and proved to have a good factor structure and psychometric properties that replicated the results of other obtainable versions. We recommend it for use among Yoruba speaking patients with low-back pain.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Marlies Feenstra ◽  
Frederike M.M. Oud ◽  
Carolien J. Jansen ◽  
Nynke Smidt ◽  
Barbara C. van Munster ◽  
...  

Abstract Background There is growing interest for interventions aiming at preventing frailty progression or even to reverse frailty in older people, yet it is still unclear which frailty instrument is most appropriate for measuring change scores over time to determine the effectiveness of interventions. The aim of this prospective cohort study was to determine reproducibility and responsiveness properties of the Frailty Index (FI) and Frailty Phenotype (FP) in acutely hospitalized medical patients aged 70 years and older. Methods Reproducibility was assessed by Intra-Class Correlation Coefficients (ICC), standard error of measurement (SEM) and smallest detectable change (SDC); Responsiveness was assessed by the standardized response mean (SRM), and area under the receiver operating characteristic curve (AUC). Results At baseline, 243 patients were included with a median age of 76 years (range 70–98). The analytic samples included 192 and 187 patients in the three and twelve months follow-up analyses, respectively. ICC of the FI were 0.85 (95 % confidence interval [CI]: 0.76; 0.91) and 0.84 (95% CI: 0.77; 0.90), and 0.65 (95% CI: 0.49; 0.77) and 0.77 (95% CI: 0.65; 0.84) for the FP. SEM ranged from 5 to 13 %; SDC from 13 to 37 %. SRMs were good in patients with unchanged frailty status (< 0.50), and doubtful to good for deteriorated and improved patients (0.43–1.00). AUC’s over three months were 0.77 (95% CI: 0.69; 0.86) and 0.71 (95% CI: 0.62; 0.79) for the FI, and 0.68 (95% CI: 0.58; 0.77) and 0.65 (95% CI: 0.55; 0.74) for the FP. Over twelve months, AUCs were 0.78 (95% CI: 0.69; 0.87) and 0.82 (95% CI: 0.73; 0.90) for the FI, and 0.78 (95% CI: 0.69; 0.87) and 0.75 (95% CI: 0.67; 0.84) for the FP. Conclusions The Frailty Index showed better reproducibility and responsiveness properties compared to the Frailty Phenotype among acutely hospitalized older patients.


2021 ◽  
Vol 1 (1) ◽  
pp. 1-7
Author(s):  
Charlotte Beaudart ◽  
Lorédana Criscenzo ◽  
Christophe Demoulin ◽  
Stephen Bornheim ◽  
Julien van Beveren ◽  
...  

Background The Keele STarT MSK Tool is a 10-item questionnaire developed to classify patients suffering from one of the five most common types of musculoskeletal pain into 3 sub-groups of risk of chronic pain (i.e. low risk, medium risk and high risk). Objective The objective of the present study was to translate the Keele STarT MSK Tool into French and to evaluate its main psychometric properties. Methods The translation and intercultural adaptation of the questionnaire were carried out using a 6-step process. The following psychometric properties were investigated: floor and ceiling effects, construct validity, internal consistency and test-retest reliability including Standard Error of Measurement and Smallest Detectable Change. Results 101 patients suffering from musculoskeletal pain participated in the study. No floor nor ceiling effects were observed. A Cronbach’s alpha of 0.65 was found, revealing a moderate internal consistency. Nevertheless, all items were demonstrated to be significantly correlated with the total score (range of correlations: r=0.2 for item 7 to r=0.78 for item 1). A good construct validity was also found with a significant correlation of r=0.78 between the French Keele STarT MSK Tool and the ÖMPSQ-short. Test-retest reliability was excellent (Intraclass Correlation Coefficient 0.97). A Standard Error of Measurement of 0.42 and a Smallest Detectable Change of ±1.17 were measured. Conclusion A validated French version of the Keele STarT MSK Tool is now available and can be used by health practitioners to stratify patients as being at low, medium or high risk of persistent musculoskeletal pain.


2020 ◽  
Vol 9 ◽  
pp. 1754
Author(s):  
Masoumeh Fazeli Tarmazdi ◽  
Zahra Tagharrobi ◽  
Zahra Sooki ◽  
Khadijeh Sharifi

Background: The first step to successful aging planning is to assess the current status using valid instruments. This study aimed to evaluate the psychometric properties of the Persian version of the Successful Aging Inventory (SAI). Materials and Methods: In the first step, SAI. was translated through forward-backward translation, and its face and content validity were qualitatively and quantitatively assessed. For construct validity assessment, 300 elderly were recruited through multi-stage random sampling. Exploratory factor analysis and known-group comparison were used. SAI reliability through internal consistency and stability was assessed using the Cronbach’s alpha values of the inventory and intraclass correlation coefficient (ICC), respectively. The standard error of measurement, smallest detectable change, and floor and ceiling effects were calculated. Results: The impact scores, content validity ratios, and content validity indices of all items were more than 1.5, 0.62, and 0.8, respectively. The scale-level content validity index was 0.94. Factor analysis identified four factors for the inventory, which explained 58.17% of the total variance of the SAI score. SAI mean score among mentally healthy participants was significantly higher (P<0.001). The relative frequencies with the lowest and highest possible scores of SAI were 0 and 3.7%, respectively. The Cronbach’s alpha, ICC, standard error of measurement, and the smallest detectable change of SAI were 0.835, 0.999, ±0.47, and 1.9, respectively. Conclusion: As a valid and reliable instrument, the Persian version of SAI could be used for a successful aging assessment. [GMJ.2020;9:e1754]


Sign in / Sign up

Export Citation Format

Share Document