scholarly journals NaCl improves reproduction by enhancing starch accumulation in the ovules of the euhalophyte Suaeda salsa

2020 ◽  
Author(s):  
Jianrong Guo ◽  
Ming Du ◽  
Chaoxia Lu ◽  
Baoshan Wang

Abstract Background: Halophytes show optimal reproduction under high-salinity conditions. However, the role of NaCl in reproduction and its possible mechanisms in the euhalophyte Suaeda salsa remain to be elucidated. Results: We performed transcript profiling of S. salsa flowers and measured starch accumulation in ovules, sugar contents in flowers, and photosynthetic parameters in the leaves of plants supplied with 0 and 200 mM NaCl. Starch accumulation in ovules, sugar contents in flowers and ovules, and net photosynthetic rate and photochemical efficiency in leaves were significantly higher in NaCl-treated plants vs. the control. We identified 14,348 differentially expressed genes in flowers of NaCl-treated vs. control plants. Many of these genes were predicted to be associated with photosynthesis, carbon utilization, and sugar and starch metabolism. These genes are crucial for maintaining photosystem structure, regulating electron transport, and improving photosynthetic efficiency in NaCl-treated plants. In addition, genes encoding fructokinase and sucrose phosphate synthase were upregulated in flowers of NaCl-treated plants. Conclusions: The higher starch and sugar contents in the ovules and flowers of S. salsa in response to NaCl treatment are likely due to the upregulation of genes involved in photosynthesis and carbohydrate metabolism, which increase photosynthetic efficiency and accumulation of photosynthetic products under these conditions.

2020 ◽  
Author(s):  
Jianrong Guo ◽  
Ming Du ◽  
Chaoxia Lu ◽  
Baoshan Wang

Abstract Background: Halophytes show optimal reproduction under high-salinity conditions. However, the role of NaCl in reproduction and its possible mechanisms in the euhalophyte Suaeda salsa remain to be elucidated. Results: We performed transcript profiling of S. salsa flowers and measured starch accumulation in ovules, sugar contents in flowers, and photosynthetic parameters in the leaves of plants supplied with 0 and 200 mM NaCl. Starch accumulation in ovules, sugar contents in flowers and ovules, and net photosynthetic rate and photochemical efficiency in leaves were significantly higher in NaCl-treated plants vs. the control. We identified 14,348 differentially expressed genes in flowers of NaCl-treated vs. control plants. Many of these genes were predicted to be associated with photosynthesis, carbon utilization, and sugar and starch metabolism. These genes are crucial for maintaining photosystem structure, regulating electron transport, and improving photosynthetic efficiency in NaCl-treated plants. In addition, genes encoding fructokinase and sucrose phosphate synthase were upregulated in flowers of NaCl-treated plants. Conclusions: The higher starch and sugar contents in the ovules and flowers of S. salsa in response to NaCl treatment are likely due to the upregulation of genes involved in photosynthesis and carbohydrate metabolism, which increase photosynthetic efficiency and accumulation of photosynthetic products under these conditions.


2020 ◽  
Author(s):  
Jianrong Guo ◽  
Ming Du ◽  
Chaoxia Lu ◽  
Baoshan Wang

Abstract Background: Halophytes show optimal reproduction under high-salinity conditions. However, the role of NaCl in reproduction and its possible mechanisms in the euhalophyte Suaeda salsa remain to be elucidated. Results: We performed transcript profiling of S. salsa flowers and measured starch accumulation in ovules, sugar contents in flowers, and photosynthetic parameters in the leaves of plants supplied with 0 and 200 mM NaCl. Starch accumulation in ovules, sugar contents in flowers and ovules, and net photosynthetic rate and photochemical efficiency in leaves were significantly higher in NaCl-treated plants vs. the control. We identified 14,348 differentially expressed genes in flowers of NaCl-treated vs. control plants. Many of these genes were predicted to be associated with photosynthesis, carbon utilization, and sugar and starch metabolism. These genes are crucial for maintaining photosystem structure, regulating electron transport, and improving photosynthetic efficiency in NaCl-treated plants. In addition, genes encoding fructokinase and sucrose phosphate synthase were upregulated in flowers of NaCl-treated plants. Conclusions: The higher starch and sugar contents in the ovules and flowers of S. salsa in response to NaCl treatment are likely due to the upregulation of genes involved in photosynthesis and carbohydrate metabolism, which increase photosynthetic efficiency and accumulation of photosynthetic products under these conditions.


2021 ◽  
Vol 21 (No 1) ◽  
Author(s):  
R. Desingh ◽  
G. Kanagaraj

Salinity is one of the most widespread environmental threats to global crop production, especially in arid and semi-arid regions. Photosynthesis and carbohydrates were determined in two ragi (Eleusine coracana (L.) Gaertn) varieties (CO13 and PAIYUR-1), subjected to salt stress of different concentrations (0, 40, 80 and 120mM). Salinity was given as a basal dose and sampling was done in leaves on 30th Days. After Treatment (DAT). There was a marked variation in the photosynthetic rates and ribulose-1, 5-bisphosphate carboxylase activity between the two ragi varieties subjected to salt stress. Photosystem II (PSII) and sucrose phosphate synthase activities were also significantly reduced as measured by salt stressed conditions. The quantity of glucose and sucrose decreased with increasing salt stress while starch showed a reverse trend under salt-stressed conditions. The results revealed that CO-13 exhibits higher photosynthetic rates and activities of ribulose-1,5-bisphosphate carboxylase, sucrose phosphate synthase with photochemical efficiency of PSII compared to PAIYUR-1


2017 ◽  
Vol 59 (2) ◽  
pp. 7-15
Author(s):  
Yun-Wei Zhang ◽  
Yun-Zhuan Zhou ◽  
Hai-Bo Lu ◽  
Deng-Yu Zheng ◽  
Yan-Hua Huang

AbstractSucrose phosphate synthase (SPS) is a key enzyme catalyzing sucrose metabolism in plants. In this study, we isolated the SPS cDNA from Saccharum spontaneum and designated as SsSPS (GenBank accession no. MF398541). The full-length of SsSPS cDNA was 4153-bp with an opening reading frame (ORF) of 3132 nucleotides, which encoded a 1043-amino acid protein. The nucleotide sequences alignment showed that it had 98%, 97% and 87% homology with S. officinarum, Setaria italica and Lolium perenne, respectively. Moreover, the SsSPS was detected to express in leaf and stem tissues of S. spontaneum and exhibited a predominant expression in the stem tissue. However, there was no significant difference in the expression level of SsSPS between young leaves and mature ones. Additionally, we generated transgenic S. spontaneum using Agrobacterium-mediated transformation. Our data will provide a valuable foundation for further study of the potential role of SPS in plants.


Sign in / Sign up

Export Citation Format

Share Document