craterostigma plantagineum
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 8)

H-INDEX

30
(FIVE YEARS 1)

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2784
Author(s):  
Shandry M. Tebele ◽  
Rose A. Marks ◽  
Jill M. Farrant

Resurrection plants have an extraordinary ability to survive extreme water loss but still revive full metabolic activity when rehydrated. These plants are useful models to understand the complex biology of vegetative desiccation tolerance. Despite extensive studies of resurrection plants, many details underlying the mechanisms of desiccation tolerance remain unexplored. To summarize the progress in resurrection plant research and identify unexplored questions, we conducted a systematic review of 15 model angiosperm resurrection plants. This systematic review provides an overview of publication trends on resurrection plants, the geographical distribution of species and studies, and the methodology used. Using the Preferred Reporting Items for Systematic reviews and Meta–Analyses protocol we surveyed all publications on resurrection plants from 2000 and 2020. This yielded 185 empirical articles that matched our selection criteria. The most investigated plants were Craterostigma plantagineum (17.5%), Haberlea rhodopensis (13.7%), Xerophyta viscosa (reclassified as X. schlechteri) (11.9%), Myrothamnus flabellifolia (8.5%), and Boea hygrometrica (8.1%), with all other species accounting for less than 8% of publications. The majority of studies have been conducted in South Africa, Bulgaria, Germany, and China, but there are contributions from across the globe. Most studies were led by researchers working within the native range of the focal species, but some international and collaborative studies were also identified. The number of annual publications fluctuated, with a large but temporary increase in 2008. Many studies have employed physiological and transcriptomic methodologies to investigate the leaves of resurrection plants, but there was a paucity of studies on roots and only one metagenomic study was recovered. Based on these findings we suggest that future research focuses on resurrection plant roots and microbiome interactions to explore microbial communities associated with these plants, and their role in vegetative desiccation tolerance.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2295
Author(s):  
Gea Guerriero ◽  
Charles Achen ◽  
Xuan Xu ◽  
Sébastien Planchon ◽  
Céline C. Leclercq ◽  
...  

The remarkable desiccation tolerance of the vegetative tissues in the resurrection species Craterostigma plantagineum (Hochst.) is favored by its unique cell wall folding mechanism that allows the ordered and reversible shrinking of the cells without damaging neither the cell wall nor the underlying plasma membrane. The ability to withstand extreme drought is also maintained in abscisic acid pre-treated calli, which can be cultured both on solid and in liquid culture media. Cell wall research has greatly advanced, thanks to the use of inhibitors affecting the biosynthesis of e.g., cellulose, since they allowed the identification of the compensatory mechanisms underlying habituation. Considering the innate cell wall plasticity of C. plantagineum, the goal of this investigation was to understand whether habituation to the cellulose biosynthesis inhibitors dichlobenil and isoxaben entailed or not identical mechanisms as known for non-resurrection species and to decipher the cell wall proteome of habituated cells. The results showed that exposure of C. plantagineum calli/cells triggered abnormal phenotypes, as reported in non-resurrection species. Additionally, the data demonstrated that it was possible to habituate Craterostigma cells to dichlobenil and isoxaben and that gene expression and protein abundance did not follow the same trend. Shotgun and gel-based proteomics revealed a common set of proteins induced upon habituation, but also identified candidates solely induced by habituation to one of the two inhibitors. Finally, it is hypothesized that alterations in auxin levels are responsible for the increased abundance of cell wall-related proteins upon habituation.


Planta ◽  
2021 ◽  
Vol 253 (5) ◽  
Author(s):  
Peilei Chen ◽  
Valentino Giarola ◽  
Dorothea Bartels

Abstract Main conclusion The cell wall protein CpWAK1 interacts with pectin, participates in decoding cell wall signals, and induces different downstream responses. Abstract Cell wall-associated protein kinases (WAKs) are transmembrane receptor kinases. In the desiccation-tolerant resurrection plant Craterostigma plantagineum, CpWAK1 has been shown to be involved in stress responses and cell expansion by forming a complex with the C. plantagineum glycine-rich protein1 (CpGRP1). This prompted us to extend the studies of WAK genes in C. plantagineum. The phylogenetic analyses of WAKs from C. plantagineum and from other species suggest that these genes have been duplicated after species divergence. Expression profiles indicate that CpWAKs are involved in various biological processes, including dehydration-induced responses and SA- and JA-related reactions to pathogens and wounding. CpWAK1 shows a high affinity for “egg-box” pectin structures. ELISA assays revealed that the binding of CpWAKs to pectins is modulated by CpGRP1 and it depends on the apoplastic pH. The formation of CpWAK multimers is the prerequisite for the CpWAK–pectin binding. Different pectin extracts lead to opposite trends of CpWAK–pectin binding in the presence of Ca2+ at pH 8. These observations demonstrate that CpWAKs can potentially discriminate and integrate cell wall signals generated by diverse stimuli, in concert with other elements, such as CpGRP1, pHapo, Ca2+[apo], and via the formation of CpWAK multimers.


Planta ◽  
2020 ◽  
Vol 252 (5) ◽  
Author(s):  
Valentino Giarola ◽  
Peilei Chen ◽  
Sarah Jane Dulitz ◽  
Maurice König ◽  
Stefano Manduzio ◽  
...  

Abstract Main conclusion CpGLP1 belongs to the large group of germin-like proteins and comprises a cell wall-localized protein which has superoxide dismutase activity and may contribute towards ROS metabolism and cell wall folding during desiccation. Abstract The plant cell wall is a dynamic matrix and its plasticity is essential for cell growth and processing of environmental signals to cope with stresses. A few so-called resurrection plants like Craterostigma plantagineum survive desiccation by implementing protection mechanisms. In C. plantagineum, the cell wall shrinks and folds upon desiccation to avoid mechanical and oxidative damage which contributes to cell integrity. Despite the high toxic potential, ROS are important molecules for cell wall remodeling processes as they participate in enzymatic reactions and act as signaling molecules. Here we analyzed the C. plantagineum germin-like protein 1 (CpGLP1) to understand its contribution to cell wall folding and desiccation tolerance. The analysis of the CpGLP1 sequence showed that this protein does not fit into the current GLP classification and forms a new group within the Linderniaceae. CpGLP1 transcripts accumulate in leaves in response to dehydration and ABA, and mannitol treatments transiently induce CpGLP1 transcript accumulation supporting the participation of CpGLP1 in desiccation-related processes. CpGLP1 protein from cell wall protein extracts followed transcript accumulation and protein preparations from bacteria overexpressing CpGLP1 showed SOD activity. In agreement with cell wall localization, CpGLP1 interacts with pectins which have not been reported for GLP proteins. Our data support a role for CpGLP1 in the ROS metabolism related to the control of cell wall plasticity during desiccation in C. plantagineum.


2020 ◽  
Vol 71 (19) ◽  
pp. 5771-5785
Author(s):  
Pierre-Nicolas Boulc’h ◽  
Emma Caullireau ◽  
Elvina Faucher ◽  
Maverick Gouerou ◽  
Amandine Guérin ◽  
...  

Abstract Plant life relies on complex arrays of environmental stress sensing and signalling mechanisms. Extremophile plants develop and grow in harsh environments with extremes of cold, heat, drought, desiccation, or salinity, which have resulted in original adaptations. In accordance with their polyphyletic origins, extremophile plants likely possess core mechanisms of plant abiotic stress signalling. However, novel properties or regulations may have emerged in the context of extremophile adaptations. Comparative omics of extremophile genetic models, such as Arabidopsis lyrata, Craterostigma plantagineum, Eutrema salsugineum, and Physcomitrella patens, reveal diverse strategies of sensing and signalling that lead to a general improvement in abiotic stress responses. Current research points to putative differences of sensing and emphasizes significant modifications of regulatory mechanisms, at the level of secondary messengers (Ca2+, phospholipids, reactive oxygen species), signal transduction (intracellular sensors, protein kinases, transcription factors, ubiquitin-mediated proteolysis) or signalling crosstalk. Involvement of hormone signalling, especially ABA signalling, cell homeostasis surveillance, and epigenetic mechanisms, also shows that large-scale gene regulation, whole-plant integration, and probably stress memory are important features of adaptation to extreme conditions. This evolutionary and functional plasticity of signalling systems in extremophile plants may have important implications for plant biotechnology, crop improvement, and ecological risk assessment under conditions of climate change.


Planta ◽  
2018 ◽  
Vol 249 (4) ◽  
pp. 1017-1035 ◽  
Author(s):  
Xun Liu ◽  
Dinakar Challabathula ◽  
Wenli Quan ◽  
Dorothea Bartels

Agronomy ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 146 ◽  
Author(s):  
Cecilia Blomstedt ◽  
Cara Griffiths ◽  
Donald Gaff ◽  
John Hamill ◽  
Alan Neale

The majority of flowering-plant species can survive complete air-dryness in their seed and/or pollen. Relatively few species (‘resurrection plants’) express this desiccation tolerance in their foliage. Knowledge of the regulation of desiccation tolerance in resurrection plant foliage is reviewed. Elucidation of the regulatory mechanism in resurrection grasses may lead to identification of genes that can improve stress tolerance and yield of major crop species. Well-hydrated leaves of resurrection plants are desiccation-sensitive and the leaves become desiccation tolerant as they are drying. Such drought-induction of desiccation tolerance involves changes in gene-expression causing extensive changes in the complement of proteins and the transition to a highly-stable quiescent state lasting months to years. These changes in gene-expression are regulated by several interacting phytohormones, of which drought-induced abscisic acid (ABA) is particularly important in some species. Treatment with only ABA induces desiccation tolerance in vegetative tissue of Borya constricta Churchill. and Craterostigma plantagineum Hochstetter. but not in the resurrection grass Sporobolus stapfianus Gandoger. Suppression of drought-induced senescence is also important for survival of drying. Further research is needed on the triggering of the induction of desiccation tolerance, on the transition between phases of protein synthesis and on the role of the phytohormone, strigolactone and other potential xylem-messengers during drying and rehydration.


Sign in / Sign up

Export Citation Format

Share Document