scholarly journals FGF8 induces epithelial-mesenchymal transition and promotes metastasis in oral squamous cell carcinoma

2020 ◽  
Author(s):  
Yilong Hao ◽  
rui liu

Abstract Background Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide, and with 500,000 new cases each year. The high risk of lymph node metastasis and local invasion are the main causes to cripples and death of OSCC patients. As potent growth factors, fibroblast growth factors (FGFs) not only exert biological effects for primary epithelial cells, but also make FGF signaling susceptible to being hijacked by cancer cells. However, the precise role of FGF8 and the therapeutic effects of FGF8 in OSCC need to be further investigated. Methods Immunohistochemical staining was performed using in human OSCC tissues. Bioinformatics analysis was performed to analyze the potential FGF8-associated proteins. Migration and invasion of OSCC cells was examined by wounding healing assay and Matrigel assay. Expression of EMT related markers Was examined by immunoblot. Results In this study, we show that FGF8 is upregulated in OSCC tissues and high FGF8 expression was related with a set of clinicopathologic parameters, including age, drinking, and survival time. FGF8 treatment enhances the invasive capability of OSCC cells. Lentivirus-based FGF8 expression promotes OSCC metastasis in a mouse lung metastasis model. Further, mechanistic study demonstrated that FGF8 induces epithelial-mesenchymal transition in OSCC cells. Conclusions These results highlight a pro-metastatic role of FGF8, and underscore the role of FGF8 in OSCC development.

Author(s):  
Yilong Hao ◽  
Yanxuan Xiao ◽  
Xiaoyu Liao ◽  
Shuya Tang ◽  
Xiaoyan Xie ◽  
...  

AbstractOral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide, and with 354 864 new cases each year. Cancer metastasis, recurrence, and drug resistance are the main causes to cripples and deaths of OSCC patients. As potent growth factors, fibroblast growth factors (FGFs) are frequently susceptible to being hijacked by cancer cells. In this study, we show that FGF8 is upregulated in OSCC tissues and high FGF8 expression is related with a set of clinicopathologic parameters, including age, drinking, and survival time. FGF8 treatment enhances the invasive capability of OSCC cells. Lentivirus-based FGF8 expression promotes OSCC metastasis in a mouse lung metastasis model. Further, mechanistic study demonstrates that FGF8 induces epithelial–mesenchymal transition (EMT) in OSCC cells. These results highlight a pro-metastatic function of FGF8, and underscore the role of FGF8 in OSCC development.


2021 ◽  
Vol 17 (6) ◽  
pp. 1098-1108
Author(s):  
Ziyu Zhu ◽  
Jiaxing Gong ◽  
Jianlu Kong ◽  
Ying Qian ◽  
Kejie Lu ◽  
...  

Oral squamous cell carcinoma (OSCC) is one of the most common tumors worldwide and has one of the highest mortalities. The progression of OSCC is accompanied by changes in the levels of many genes. Iroquois homeobox 5 (IRX5), a novel protein involved in several embryonic developmental processes, has been found in recent years to play a significant role in regulating the growth of malignant tumors. However, its role and mechanism in OSCC are still unclear. In this study, we used nano-PCR to examine the levels of IRX5 in OSCC tissues. Through overexpression and knockdown experiments, we researched the role of IRX5 in regulating OSCC cell multiplication, metastasis, and epithelial-mesenchymal transition (EMT). The results demonstrated that IRX5 expression is higher in OSCC tissues in contrast to adjacent tissues. Overexpression of IRX5 promotes the multiplication, metastasis, invasion, and EMT of OSCC cells. Additional bioinformatics analysis showed that miRNA-147 can target the 3’UTR end of IRX5 and negatively regulate its expression, and overexpression of miRNA-147 can weaken the cancer-promoting effect of IRX5. In conclusion, this study found that IRX5 plays a role in promoting cancer in OSCC, and IRX5 is also negatively regulated by miRNA-147.


2019 ◽  
Vol 8 (2) ◽  
pp. 273 ◽  
Author(s):  
Miyako Kurihara-Shimomura ◽  
Tomonori Sasahira ◽  
Hiroyuki Shimomura ◽  
Chie Nakashima ◽  
Tadaaki Kirita

Background: The relationship between miR-29b-1-5p and c-Met proto-oncogene in oral squamous cell carcinoma (OSCC) remains to be investigated. This study aimed to reveal the role of miR-29b-1-5p in the pathogenesis of OSCC using molecular and biological analyses. Methods: We investigated the expression of miR-29b-1-5p, c-Met, and markers of the epithelial-mesenchymal transition (EMT) in the tissues of 49 patients with OSCC and in human OSCC cells with different tumorigenicity. Further, we determined the effects of miR-29b-1-5p on the phenotypes of OSCC cell lines. Results: The expression levels of miR-29b-1-5p in most patients with OSCC were higher than those of the normal oral epithelium. In OSCC, upregulation of miR-29b-1-5p significantly correlated with histological grade, the EMT, and the immunohistochemical grade, indicated by c-Met expression. The prognosis was poor for patients with miR-29b-1-5p expression and coexpression of miR-29b-1-5p and c-Met. In OSCC cells exhibiting the EMT phenotype, knockdown of miR-29b-1-5p suppressed the EMT, which was recovered by enforced expression of c-Met. Further, the mRNA encoding cadherin 1 (CDH1) was a direct target of miR-29b-1-5p. Conclusions: Our results suggest that miR-29b-1-5p acts as an oncogenic miRNA that synergizes with c-Met to induce the EMT of OSCC cells.


Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1658 ◽  
Author(s):  
Shin Pai ◽  
Oluwaseun Adebayo Bamodu ◽  
Yen-Kuang Lin ◽  
Chun-Shu Lin ◽  
Pei-Yi Chu ◽  
...  

Background: Oral squamous cell carcinoma (OSCC), with high mortality rates, is one of the most diagnosed head and neck cancers. Epithelial-to-mesenchymal transition (EMT) and the generation of cancer stem cells (CSCs) are two keys for therapy-resistance, relapse, and distant metastasis. Accumulating evidence indicates that aberrantly expressed cluster of differentiation (CD)47 is associated with cell-death evasion and metastasis; however, the role of CD47 in the generation of CSCs in OSCC is not clear. Methods: We investigated the functional roles of CD47 in OSCC cell lines SAS, TW2.6, HSC-3, and FaDu using the bioinformatics approach, immunoblotting, immunofluorescence staining, and assays for cellular migration, invasion, colony, and orosphere formation, as well as radiosensitivity. Results: We demonstrated increased expression of CD47 in OSCC patients was associated with an estimated poorly survival disadvantage (p = 0.0391) and positively correlated with the expression of pluripotency factors. Silencing CD47 significantly suppressed cell viability and orosphere formation, accompanied by a downregulated expression of CD133, SRY-Box transcription factor 2 (SOX2), octamer-binding transcription factor 4 (OCT4), and c-Myc. In addition, CD47-silenced OSCC cells showed reduced EMT, migration, and clonogenicity reflected by increased E-cadherin and decreased vimentin, Slug, Snail, and N-cadherin expression. Conclusion: Of therapeutic relevance, CD47 knockdown enhanced the anti-OSCC effect of radiotherapy. Collectively, we showed an increased CD47 expression promoted the generation of CSCs and malignant OSCC phenotypes. Silencing CD47, in combination with radiation, could provide an alternative and improved therapeutic efficacy for OSCC patients.


Sign in / Sign up

Export Citation Format

Share Document