scholarly journals Laboratory colonization by Dirofilaria immitis alters the microbiome of female Aedes aegypti mosquitoes

2020 ◽  
Author(s):  
Abdulsalam Adegoke ◽  
Erik Neff ◽  
Amie Geary ◽  
Montana Ciara Husser ◽  
Kevin Wilson ◽  
...  

Abstract Background: The ability of blood feeding arthropods to successfully acquire and transmit pathogens of medical and veterinary importance has been shown to be interfered with, or enhanced by, the arthropod’s native microbiome. Mosquitoes transmit viruses, protozoan and filarial nematodes, the majority of which contribute to the 17% of infectious disease cases worldwide. Dirofilaria immitis , a mosquito transmitted by filarial nematodes of dogs and cats, is vectored by several mosquito species including Aedes aegypti . Methods: In this study, we investigated the impact of D. immitis colonization on the microbiome of laboratory reared female A. aegypti . Metagenomic analysis of the V3-V4 variable region of the microbial 16SRNA was used for identification of the microbial differences down to species level. Results We generated a total of 1068 OTUs representing 16 phyla, 181 genera and 271 bacterial species. Overall, in order of abundance, Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were the most represented phylum with D. immitis infected mosquitoes having more of Proteobacteria (71%) than uninfected mosquitoes (56.9%). An interesting finding in this study is the detection of Klebsiella oxytoca in relatively similar abundance in infected and uninfected mosquitoes, suggesting a possible endosymbiotic relationship, and has been previously shown to indirectly compete for nutrients with fungi on domestic housefly eggs and larva. While D. immitis colonization has no effect on the overall species richness, we identified significant differences in the composition of selected bacteria genus and phylum between the two groups. We also reported distinct compositional and phylogenetic differences in the individual bacteria species when commonly identified bacteria were compared. Conclusions In conclusion, this is the first study to the best of our knowledge to understand the impact of a filarial infection on the microbiome of its mosquito vector. Further studies are required to identify bacteria species that could play an important role in the mosquito biology. While the microbiome composition of A. aegypti mosquito have been previously reported, our study shows that in an effort to establish itself, a filarial nematode modifies and alters the overall microbial diversity within its mosquito host.

2020 ◽  
Author(s):  
Abdulsalam Adegoke ◽  
Erik Neff ◽  
Amie Geary ◽  
Montana Ciara Husser ◽  
Kevin Wilson ◽  
...  

Abstract Background: The ability of blood-feeding arthropods to successfully acquire and transmit pathogens of medical and veterinary importance has been shown to be interfered with, or enhanced by, the arthropod’s native microbiome. Mosquitoes transmit viruses, protozoan and filarial nematodes, the majority of which contribute to the 17% of infectious disease cases worldwide. Dirofilaria immitis, a mosquito-transmitted filarial nematodes of dogs and cats, is vectored by several mosquito species including Aedes aegypti.Methods: In this study, we investigated the impact of D. immitis colonization on the microbiome of laboratory reared female Ae. aegypti. Metagenomic analysis of the V3-V4 variable region of the microbial 16S RNA gene was used for identification of the microbial differences down to species level.Results: We generated a total of 1068 OTUs representing 16 phyla, 181 genera and 271 bacterial species. Overall, in order of abundance, Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were the most represented phylum with D. immitis-infected mosquitoes having more of Proteobacteria (71%) than uninfected mosquitoes (56.9%). An interesting finding in this study is the detection of Klebsiella oxytoca in relatively similar abundance in infected and uninfected mosquitoes, suggesting a possible endosymbiotic relationship, and has been previously shown to indirectly compete for nutrients with fungi on domestic housefly eggs and larvae. While D. immitis colonization has no effect on the overall species richness, we identified significant differences in the composition of selected bacterial genera and phyla between the two groups. We also reported distinct compositional and phylogenetic differences in the individual bacterial species when commonly identified bacteria were compared.Conclusions: In conclusion, this is the first study to the best of our knowledge, this is the first study to understand the impact of a filarial infection on the microbiome of its mosquito vector. Further studies are required to identify bacteria species that could play an important role in the mosquito biology. While the microbiome composition of Ae. aegypti mosquito have been previously reported, our study shows that in an effort to establish itself, a filarial nematode modifies and alters the overall microbial diversity within its mosquito host.


2020 ◽  
Author(s):  
Abdulsalam Adegoke ◽  
Erik Neff ◽  
Amie Geary ◽  
Montana Ciara Husser ◽  
Kevin Wilson ◽  
...  

Abstract Background: The ability of blood feeding arthropods to successfully acquire and transmit pathogens of medical and veterinary importance has been shown to be interfered or enhanced by the arthropod’s native microbiome. Mosquitoes transmit bacteria, viruses, protozoan and filarial nematodes, majority of which contributes to the 17% of infectious disease cases worldwide. Dirofilaria immitis, a mosquito transmitted filarial nematodes of dogs and cats, is vectored by several mosquito species including Aedes aegypti.Methods: In this study, we investigated the impact of D. immitis colonization on the microbiome of laboratory reared female A. aegypti. Metagenomic analysis of the V3-V4 variable region of the microbial 16SRNA was used for identification of the microbial differences down to species level.Results: We generated a total of 1068 OTUs representing 16 phyla, 181 genera and 271 bacterial species. Overall, in order of abundance, Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were the most represented phylum with D. immitis infected mosquitoes having more of Proteobacteria (71%) than uninfected mosquitoes (56.9%). An interesting finding in this study is the detection of Klebsiella oxytoca in relatively similar abundance in infected and uninfected mosquitoes, suggesting a possible endosymbiotic relationship. It has been previously shown to indirectly compete for nutrients with fungi on the domestic housefly eggs and larva. While D. immitis colonization has no effect on the overall species richness, we identified significant differences in the composition of selected bacteria genus and phylum between the two groups. We also reported distinct compositional and phylogenetic differences in the individual bacteria species when commonly identified bacteria were compared.Conclusions: In conclusion, this is the first study to the best of our knowledge to understand the impact of a filarial infection on the microbiome of its mosquito vector. Further studies is required to identify bacteria species that could play an important role in the mosquito biology. While the microbiome composition of A. aegypti mosquito have been previously reported, our study shows that in an effort to establish itself, a filarial nematode modifies and alters the overall microbial diversity within its mosquito host.


2020 ◽  
Author(s):  
Abdulsalam Adegoke ◽  
Erik Neff ◽  
Amie Geary ◽  
Montana Ciara Husser ◽  
Kevin Wilson ◽  
...  

Abstract Background: The ability of blood feeding arthropods to successfully acquire and transmit pathogens of medical and veterinary importance has been shown to be interfered or enhanced by the arthropod’s native microbiome. Mosquitoes transmit bacteria, viruses, protozoan and filarial nematodes, majority of which contributes to the 17% of infectious disease cases worldwide. Dirofilaria immitis, a mosquito transmitted filarial nematodes of dogs and cats, is vectored by several mosquito species including Aedes aegypti.Methods: In this study, we investigated the impact of D. immitis colonization on the microbiome of laboratory reared female A. aegypti. Metagenomic analysis of the V3-V4 variable region of the microbial 16SRNA was used for identification of the microbial differences down to species level.Results: We generated a total of 1068 OTUs representing 16 phyla, 181 genera and 271 bacterial species. Overall, in order of abundance, Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were the most represented phylum with D. immitis infected mosquitoes having more of Proteobacteria (71%) than uninfected mosquitoes (56.9%). An interesting finding in this study is the detection of Klebsiella oxytoca in relatively similar abundance in infected and uninfected mosquitoes. It has been previously shown to indirectly compete for nutrients with fungi on the domestic housefly eggs and larva. While not statistically significant, D. immitis infection alters bacterial diversity by reducing the bacterial species richness and abundance.Conclusions: In conclusion, this is the first study to the best of our knowledge to understand the impact of a filarial infection on the microbiome of its mosquito vector. While the microbiome composition of A. aegypti mosquito have been previously reported, our study shows that in an effort to establish itself, a filarial nematode modifies and alters the overall microbial diversity within its mosquito host.


2020 ◽  
Author(s):  
Abdulsalam Adegoke ◽  
Erik Neff ◽  
Amie Geary ◽  
Montana Ciara Husser ◽  
Kevin Wilson ◽  
...  

Abstract Background: The ability of blood feeding arthropods to successfully acquire and transmit pathogens of medical and veterinary importance has been shown to be interfered with, or enhanced by, the arthropod’s native microbiome. Mosquitoes transmit viruses, protozoan and filarial nematodes, the majority of which contribute to the 17% of infectious disease cases worldwide. Dirofilaria immitis, a mosquito transmitted by filarial nematodes of dogs and cats, is vectored by several mosquito species including Aedes aegypti.Methods: In this study, we investigated the impact of D. immitis colonization on the microbiome of laboratory reared female A. aegypti. Metagenomic analysis of the V3-V4 variable region of the microbial 16SRNA was used for identification of the microbial differences down to species level.Results We generated a total of 1068 OTUs representing 16 phyla, 181 genera and 271 bacterial species. Overall, in order of abundance, Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were the most represented phylum with D. immitis infected mosquitoes having more of Proteobacteria (71%) than uninfected mosquitoes (56.9%). An interesting finding in this study is the detection of Klebsiella oxytoca in relatively similar abundance in infected and uninfected mosquitoes, suggesting a possible endosymbiotic relationship, and has been previously shown to indirectly compete for nutrients with fungi on domestic housefly eggs and larva. While D. immitis colonization has no effect on the overall species richness, we identified significant differences in the composition of selected bacteria genus and phylum between the two groups. We also reported distinct compositional and phylogenetic differences in the individual bacteria species when commonly identified bacteria were compared. Conclusions In conclusion, this is the first study to the best of our knowledge to understand the impact of a filarial infection on the microbiome of its mosquito vector. Further studies are required to identify bacteria species that could play an important role in the mosquito biology. While the microbiome composition of A. aegypti mosquito have been previously reported, our study shows that in an effort to establish itself, a filarial nematode modifies and alters the overall microbial diversity within its mosquito host.


2020 ◽  
Author(s):  
Abdulsalam Adegoke ◽  
Erik Neff ◽  
Amie Geary ◽  
Montana Ciara Husser ◽  
Kevin Wilson ◽  
...  

Abstract Background: The ability of blood-feeding arthropods to successfully acquire and transmit pathogens of medical and veterinary importance has been shown to be interfered with, or enhanced by, the arthropod’s native microbiome. Mosquitoes transmit viruses, protozoan and filarial nematodes, the majority of which contribute to the 17% of infectious disease cases worldwide. Dirofilaria immitis, a mosquito-transmitted filarial nematodes of dogs and cats, is vectored by several mosquito species including Aedes aegypti.Methods: In this study, we investigated the impact of D. immitis colonization on the microbiome of laboratory reared female Ae. aegypti. Metagenomic analysis of the V3-V4 variable region of the microbial 16S RNA gene was used for identification of the microbial differences down to species level.Results: We generated a total of 1068 OTUs representing 16 phyla, 181 genera and 271 bacterial species. Overall, in order of abundance, Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were the most represented phylum with D. immitis-infected mosquitoes having more of Proteobacteria (71%) than uninfected mosquitoes (56.9%). An interesting finding in this study is the detection of Klebsiella oxytoca in relatively similar abundance in infected and uninfected mosquitoes, suggesting a possible endosymbiotic relationship, and has been previously shown to indirectly compete for nutrients with fungi on domestic housefly eggs and larvae. While D. immitis colonization has no effect on the overall species richness, we identified significant differences in the composition of selected bacterial genera and phyla between the two groups. We also reported distinct compositional and phylogenetic differences in the individual bacterial species when commonly identified bacteria were compared.Conclusions: To the best of our knowledge, this is the first study to understand the impact of a filarial infection on the microbiome of its mosquito vector. Further studies are required to identify bacteria species that could play an important role in the mosquito biology. While the microbiome composition of Ae. aegypti mosquito have been previously reported, our study shows that in an effort to establish itself, a filarial nematode modifies and alters the overall microbial diversity within its mosquito host.


2020 ◽  
Author(s):  
Abdulsalam Adegoke ◽  
Erik Neff ◽  
Amie Geary ◽  
Montana Ciara Husser ◽  
Kevin Wilson ◽  
...  

Abstract Background: The ability of blood feeding arthropods to successfully acquire and transmit pathogens of medical and veterinary importance has been shown to be interfered with, or enhanced by, the arthropod’s native microbiome. Mosquitoes transmit viruses, protozoan and filarial nematodes, the majority of which contribute to the 17% of infectious disease cases worldwide. Dirofilaria immitis , a mosquito transmitted by filarial nematodes of dogs and cats, is vectored by several mosquito species including Aedes aegypti . Methods: In this study, we investigated the impact of D. immitis colonization on the microbiome of laboratory reared female A. aegypti . Metagenomic analysis of the V3-V4 variable region of the microbial 16SRNA was used for identification of the microbial differences down to species level. Results: We generated a total of 1068 OTUs representing 16 phyla, 181 genera and 271 bacterial species. Overall, in order of abundance, Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were the most represented phylum with D. immitis infected mosquitoes having more of Proteobacteria (71%) than uninfected mosquitoes (56.9%). An interesting finding in this study is the detection of Klebsiella oxytoca in relatively similar abundance in infected and uninfected mosquitoes, suggesting a possible endosymbiotic relationship, and has been previously shown to indirectly compete for nutrients with fungi on domestic housefly eggs and larva. While D. immitis colonization has no effect on the overall species richness, we identified significant differences in the composition of selected bacteria genus and phylum between the two groups. We also reported distinct compositional and phylogenetic differences in the individual bacteria species when commonly identified bacteria were compared. Conclusions: In conclusion, this is the first study to the best of our knowledge to understand the impact of a filarial infection on the microbiome of its mosquito vector. Further studies are required to identify bacteria species that could play an important role in the mosquito biology. While the microbiome composition of A. aegypti mosquito have been previously reported, our study shows that in an effort to establish itself, a filarial nematode modifies and alters the overall microbial diversity within its mosquito host.


2020 ◽  
Author(s):  
Abdulsalam Adegoke ◽  
Erik Neff ◽  
Amie Geary ◽  
Montana Ciara Husser ◽  
Kevin Wilson ◽  
...  

Abstract Background The ability of blood feeding arthropods to successfully acquire and transmit pathogens of medical and veterinary importance has been shown to be interfered or enhanced by the arthropod’s native microbiome. Mosquitoes transmit bacteria, viruses, protozoan and filarial nematodes, majority of which contributes to the 17% of infectious disease cases worldwide. Dirofilaria immitis , a mosquito transmitted filarial nematodes of dogs and cats, is vectored by several mosquito species including Aedes aegypti . Methods In this study, we investigated the impact of D. immitis colonization on the microbiome of laboratory reared female A. aegypti . Metagenomic analysis of the V3-V4 variable region of the microbial 16SRNA was used for identification of the microbial differences down to species level. Results We generated a total of 1068 OTUs representing 16 phyla, 181 genera and 271 bacterial species. Overall, in order of abundance, Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were the most represented phylum with D. immitis infected mosquitoes having more of Proteobacteria (71%) than uninfected mosquitoes (56.9%). An interesting finding in this study is the detection of Klebsiella oxytoca in relatively similar abundance in infected and uninfected mosquitoes. It has been previously shown to indirectly compete for nutrients with fungi on the domestic housefly eggs and larva. While not statistically significant, D. immitis infection alters bacterial diversity by reducing the bacterial species richness and abundance. Conclusions In conclusion, this is the first study to the best of our knowledge to understand the impact of a filarial infection on the microbiome of its mosquito vector. While the microbiome composition of A. aegypti mosquito have been previously reported, our study shows that in an effort to establish itself, a filarial nematode modifies and alters the overall microbial diversity within its mosquito host.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Abigail R. McCrea ◽  
Elizabeth B. Edgerton ◽  
Genevieve T. Oliver ◽  
Fiona M. O’Neill ◽  
Thomas J. Nolan ◽  
...  

Abstract Background Mosquitoes transmit filarial nematodes to both human and animal hosts, with worldwide health and economic consequences. Transmission to a vertebrate host requires that ingested microfilariae develop into infective third-stage larvae capable of emerging from the mosquito proboscis onto the skin of the host during blood-feeding. Determining the number of microfilariae that successfully develop to infective third-stage larvae in the mosquito host is key to understanding parasite transmission potential and to developing new strategies to block these worms in their vector. Methods We developed a novel method to efficiently assess the number of infective third-stage filarial larvae that emerge from experimentally infected mosquitoes. Following infection, individual mosquitoes were placed in wells of a multi-well culture plate and warmed to 37 °C to stimulate parasite emergence. Aedes aegypti infected with Dirofilaria immitis were used to determine infection conditions and assay timing. The assay was also tested with Brugia malayi-infected Ae. aegypti. Results Approximately 30% of Ae. aegypti infected with D. immitis and 50% of those infected with B. malayi produced emerging third-stage larvae. Once D. immitis third-stage larvae emerged at 13 days post infection, the proportion of mosquitoes producing them and the number produced per mosquito remained stable until at least day 21. The prevalence and intensity of emerging third-stage B. malayi were similar on days 12–14 post infection. Increased uptake of D. immitis microfilariae increased the fitness cost to the mosquito but did not increase the number of emerging third-stage larvae. Conclusions We provide a new assay with an associated set of infection conditions that will facilitate assessment of the filarial transmission potential of mosquito vectors and promote preparation of uniformly infectious third-stage larvae for functional assays. The ability to quantify infection outcome will facilitate analyses of molecular interactions between vectors and filariae, ultimately allowing for the establishment of novel methods to block disease transmission.


2020 ◽  
Vol 10 (1) ◽  
pp. 67-77
Author(s):  
Amos Watentena ◽  
Ikem Chris Okoye ◽  
Ikechukwu Eugene Onah ◽  
Onwude Cosmas Ogbonnaya ◽  
Emmanuel Ogudu

Mosquitoes of Aedes species are vectors of several arboviral diseases which continue to be a major public health problem in Nigeria. This study among other things, morphologically identified Aedes mosquitoes collected from Nsukka LGA and used an allele specific PCR amplification for discrimination of dengue vectors. Larval sampling, BG-sentinel traps and modified human landing catches were used for mosquito sampling in two selected autonomous communities of Nsukka LGA (Nsukka and Obimo). A total of 124 Aedes mosquitoes consisting of five (5) different species were collected from April to June, 2019 in a cross-sectional study that covered 126 households, under 76 distinct geographical coordinates. Larvae was mainly collected from plastic containers 73% (n=224), metallic containers 14% (n=43), earthen pots 9% (n=29) and used car tyres 3% (n=9), reared to adult stage 69.35% (n=86), and all mosquitoes were identified using standard morphological keys. Five (5) Aedes mosquito species were captured; Aedes aegypti 83(66.94%), Aedes albopictus 33(26.61%), Aedes simpsoni (4.48%), Aedes luteocephalus (≤1%) and Aedes vittatus (≤1%). Nsukka autonomous community had higher species diversity than Obimo. Allele specific amplification confirmed dengue vectors, Aedes aegypti and Aedes albopictus species on a 2% agarose gel. Since the most recent re-emergence of arboviral diseases is closely associated with Aedes species, findings of this study, therefore, give further evidence about the presence of potential arboviral vectors in Nigeria and describe the role of a simple PCR in discriminating some. Further entomological studies should integrate PCR assays in mosquito vector surveillance.


Author(s):  
Chris Holderman ◽  
Nicole O Abruzzo ◽  
Noor A Abdelsamad ◽  
Phillip E Kaufman ◽  
Peter M DiGennaro

Abstract Dirofilaria immitis, the causative agent of dog heartworm disease, is an important cause of canine morbidity and mortality, expensive to treat, and severe infections are often fatal. Much is known about the pathogen in the canine host, yet little is known on the basic ecology of the nematode in the mosquito vector. Thus, to evaluate the effectiveness of collection techniques on ability to capture dog heartworm-infected mosquitoes (Diptera Culicidae), we conducted a field study spanning 111 wk. Four methods were used: two aspirators types, sweep netting, and a CDC trap. All sites had canines present in either residential yards (n = 4) or dog kennel facilities (n = 3). Collected mosquitoes were sorted by site, trap, species, and date, then pooled into groups of up to 25 individuals. Mosquito head and thorax pools were extracted for DNA, that was screened using currently available protocols. These protocols were found unreliable; thus, we developed a novel qPCR primer and probe set. Using this method, the original samples were re-assayed and provided 494 positive pools. Approximately 10% of positive samples were confirmed by Sanger sequencing. Twenty-two mosquito species tested positive for dog heartworm DNA, including a new association with Wyeomyia mitchellii (Theobald). Although Aedes atlanticus (Dyar and Knab), Anopheles crucians Wiedemann, and Culiseta melanura (Coquillett) composed nearly 36% of the total collection, these species represented 42% of the qPCR positive pools. Infection rates within commonly collected mosquitoes ranged up to 2.5%, with more rarely collected species ranging up to 14%. The CDC trap was the most effective collection method at trapping infected mosquitoes.


Sign in / Sign up

Export Citation Format

Share Document