Novel mutation in ferroportin1 is associated with autosomal dominant hemochromatosis

Blood ◽  
2002 ◽  
Vol 100 (2) ◽  
pp. 692-694 ◽  
Author(s):  
Daniel F. Wallace ◽  
Palle Pedersen ◽  
Jeannette L. Dixon ◽  
Peter Stephenson ◽  
Jeffrey W. Searle ◽  
...  

Abstract Hemochromatosis is a common disorder characterized by excess iron absorption and accumulation of iron in tissues. Usually hemochromatosis is inherited in an autosomal recessive pattern and is caused by mutations in the HFE gene. Less common non-HFE–related forms of hemochromatosis have been reported and are caused by mutations in the transferrin receptor 2 gene and in a gene localized to chromosome 1q. Autosomal dominant forms of hemochromatosis have also been described. Recently, 2 mutations in theferroportin1 gene, which encodes the iron transport protein ferroportin1, have been implicated in families with autosomal dominant hemochromatosis from the Netherlands and Italy. We report the finding of a novel mutation (V162del) in ferroportin1 in an Australian family with autosomal dominant hemochromatosis. We propose that this mutation disrupts the function of the ferroportin1 protein, leading to impaired iron homeostasis and iron overload.

2019 ◽  
Author(s):  
Jiajun Chen ◽  
Yajuan Sun ◽  
Xiaoyang Liu ◽  
Jia Li

Abstract Background: Hereditary ataxia is a group of neurodegenerative diseases with progressive cerebellar ataxia of the gait and limbs as the main symptoms. The genetic patterns of the disease are diverse but it is mainly divided into autosomal dominant cerebellar ataxia (ADCA) and autosomal recessive cerebellar ataxia (ARCA), and about 45 pathogenic loci have been found in ADCA. The purpose of this study was to explore the genetic defect in a Chinese family with ADCA. Methods: A three-generation Chinese family with ADCA was enrolled in this study, Exome sequencing was conducted in four family members, including the proband, and verified by Sanger sequencing. Results: The rs779393130 mutation of the CACNA1C gene co-segregated with the ataxia phenotype in this family. The mutation was not detected in 50 unaffected controls. Conclusions: The rs779393130 mutation of CACNA1C may be associated with the phenotype of the disease. The CACNA1C gene encodes the Cav1.2 (alpha-1) subunit of an L-type calcium channel and this subunit may be related to the ADCA phenotype. These findings may have implications for family clinical monitoring and genetic counseling and may also help in understanding pathogenesis of this disease.


2019 ◽  
Author(s):  
Jiajun Chen ◽  
Yajuan Sun ◽  
Xiaoyang Liu ◽  
Jia Li

Abstract Background: Hereditary ataxia is a group of neurodegenerative diseases with progressive cerebellar ataxia of the gait and limbs as the main symptoms. The genetic patterns of the disease are diverse but it is mainly divided into autosomal dominant cerebellar ataxia (ADCA) and autosomal recessive cerebellar ataxia (ARCA), and about 45 pathogenic loci have been found in ADCA. The purpose of this study was to explore the genetic defect in a Chinese family with ADCA. Methods: A three-generation Chinese family with ADCA was enrolled in this study, Exome sequencing was conducted in four family members, including the proband, and verified by Sanger sequencing. Results: The rs779393130 mutation of the CACNA1C gene co-segregated with the ataxia phenotype in this family. The mutation was not detected in 50 unaffected controls. Conclusions: The rs779393130 mutation of CACNA1C may be associated with the phenotype of the disease. The CACNA1C gene encodes the Cav1.2 (alpha-1) subunit of an L-type calcium channel and this subunit may be related to the ADCA phenotype. These findings may have implications for family clinical monitoring and genetic counseling and may also help in understanding pathogenesis of this disease.


2019 ◽  
Author(s):  
Jiajun Chen ◽  
Yajuan Sun ◽  
Xiaoyang Liu ◽  
Jia Li

Abstract Background: Hereditary ataxia is a group of neurodegenerative diseases with progressive cerebellar ataxia of the gait and limbs as the main symptoms. The genetic patterns of the disease are diverse but it is mainly divided into autosomal dominant cerebellar ataxia (ADCA) and autosomal recessive cerebellar ataxia (ARCA), and about 45 pathogenic loci have been found in ADCA. The purpose of this study was to explore the genetic defect in a Chinese family with ADCA. Methods: A three-generation Chinese family with ADCA was enrolled in this study, Exome sequencing was conducted in four family members, including the proband, and verified by Sanger sequencing. Results: The rs779393130 mutation of the CACNA1C gene co-segregated with the ataxia phenotype in this family. The mutation was not detected in 50 unaffected controls. Conclusions: The rs779393130 mutation of CACNA1C may be associated with the phenotype of the disease. The CACNA1C gene encodes the Cav1.2 (alpha-1) subunit of an L-type calcium channel and this subunit may be related to the ADCA phenotype. These findings may have implications for family clinical monitoring and genetic counseling and may also help in understanding pathogenesis of this disease.


MedPharmRes ◽  
2019 ◽  
Vol 3 (2) ◽  
pp. 25-28
Author(s):  
Trong Duc Quach ◽  
Yuji Urabe ◽  
Toru Hiyama

Current pathophysiologic knowledge of achalasia suggests the important involvement of genetic predisposition. However, familial achalasia is very rare and most of the case reports in literature have shown an autosomal recessive pattern of inherence. We hereby report a case of familial achalasia with autosomal dominant pattern of inherence affecting ten members in three generations of a Vietnamese family.


2019 ◽  
Author(s):  
Jiajun Chen ◽  
Yajuan Sun ◽  
Xiaoyang Liu ◽  
Jia Li

Abstract Background: Hereditary ataxia is a group of neurodegenerative diseases with progressive cerebellar ataxia of the gait and limbs as the main symptoms. The genetic patterns of the disease are diverse but it is mainly divided into autosomal dominant cerebellar ataxia (ADCA) and autosomal recessive cerebellar ataxia (ARCA), and about 45 pathogenic loci have been found in ADCA. The purpose of this study was to explore the genetic defect in a Chinese family with ADCA. Methods: A three-generation Chinese family with ADCA was enrolled in this study, Exome sequencing was conducted in four family members, including the proband, and verified by Sanger sequencing. Results: The rs779393130 mutation of the CACNA1C gene co-segregated with the ataxia phenotype in this family. The mutation was not detected in 50 unaffected controls. Conclusions: The rs779393130 mutation of CACNA1C may be associated with the phenotype of the disease. The CACNA1C gene encodes the Cav1.2 (alpha-1) subunit of an L-type calcium channel and this subunit may be related to the ADCA phenotype. These findings may have implications for family clinical monitoring and genetic counseling and may also help in understanding pathogenesis of this disease.


2017 ◽  
Vol 2017 ◽  
pp. 1-3
Author(s):  
Mariam S. Al Harbi ◽  
Ayman W. El-Hattab

Protein C is an anticoagulant that is encoded by the PROC gene. Protein C deficiency (PCD) is inherited in an autosomal dominant or recessive pattern. Autosomal dominant PCD is caused by monoallelic mutations in PROC and often presents with venous thromboembolism. On the other hand, biallelic PROC mutations lead to autosomal recessive PCD which is a more severe disease that typically presents in neonates as purpura fulminans. In this report, we describe an 8-month-old infant with autosomal recessive PCD who presented with multiple lumps on his lower extremities at the age of 2 months and later developed purpura fulminans after obtaining a muscle biopsy from the thigh at the age of 5 months. Protein C level was less than 10% and PROC gene sequencing identified a novel homozygous missense mutation, c.1198G>A (p.Gly400Ser). Autosomal recessive PCD typically presents with neonatal purpura fulminans which is often fatal if not recognized and treated early. Therefore, early recognition is critical in preventing morbidity and mortality associated with autosomal recessive PCD.


2019 ◽  
Vol 157 (4) ◽  
pp. 189-196 ◽  
Author(s):  
Yeliz Güven ◽  
Elodie Bal ◽  
Umut Altunoglu ◽  
Esra Yücel ◽  
Smail Hadj-Rabia ◽  
...  

Hypohidrotic or anhidrotic ectodermal dysplasia (HED/EDA) is characterized by impaired development of the hair, teeth, or sweat glands. HED/EDA is inherited in an X-linked, autosomal dominant, or autosomal recessive pattern and caused by the pathogenic variants in 4 genes: EDA, EDAR, EDARADD, and WNT10A. The aim of the present study was to perform molecular screening of these 4 genes in a cohort of Turkish individuals diagnosed with HED/EDA. We screened for pathogenic variants of WNT10A, EDA, EDAR, and EDARADD through Sanger sequencing. We further assessed the clinical profiles of the affected individuals in order to establish phenotype-genotype correlation. In 17 (63%) out of 27 families, 17 pathogenic variants, 8 being novel, were detected in the 4 well-known ectodermal dysplasia genes. EDAR and EDA variants were identified in 6 families each, WNT10A variants in 4, and an EDARADD variant in 1, accounting for 35.3, 35.3, 23.5, and 5.9% of mutation-positive families, respectively. The low mutation detection rate of the cohort and the number of the EDAR pathogenic variants being as high as the EDA ones were the most noteworthy findings which could be attributed to the high consanguinity rate.


2021 ◽  
Vol 7 (2) ◽  
pp. 97-104

Syndactyly is joining or merging of web in feet and hands digits. It is inherited by autosomal dominant, autosomal recessive, x-linked, and y-linked manner. Its prevalence is around 1 in 2000 live birth. Non-syndromic syndactyly is classified into nine types. In this study, we find out prevalence, percentage, types, and mode of inheritance of syndactyly in families of district Bahawalnagar. The survey was carried out in hospitals, schools, and villages of district Bahawalnagar to find out the patients with congenital syndactyly. Three families with cousin marriages were selected for pedigrees. These families had 2:1 of foot and hand syndactyly. The percentage of complete and incomplete syndactyly was recorded 50% in all families. The mode of inheritance was autosomal dominant and autosomal recessive pattern because of two types of syndactyly type I (SD1) and syndactyly type I-c. In families Bwn1, Bwn2, and Bwn3 the percentage of family members associated with syndactyly was 16%, 9.7%, and 6.89% respectively. It was further noted that all male members of all families were affected with syndactyly. This study finds out the type I (SD1) and type I-c syndactyly in the studied sample population.


2001 ◽  
Vol 21 (5) ◽  
pp. 430-440 ◽  
Author(s):  
Ira D. Davis ◽  
Katherine MacRae Dell ◽  
William E. Sweeney ◽  
Ellis D. Avner

Sign in / Sign up

Export Citation Format

Share Document